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基于 ＣＮＮ⁃ＬＳＴＭ⁃Ａｔｔｅｎｔｉｏｎ 模型的缺血性脑卒中发病预测
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摘要　 目的　 构建基于卷积神经网络（ＣＮＮ） －长短时记忆网络（ＬＳＴＭ） －注意力机制（Ａｔｔｅｎｔｉｏｎ）的深度学习模型，探讨气象、
临床因素与缺血性脑卒中发病的关联性。 方法　 纳入缺血性脑卒中住院患者的临床资料及同期的气象数据，构建基于 ＣＮＮ、
ＬＳＴＭ 和 Ａｔｔｅｎｔｉｏｎ 的融合模型 ＣＮＮ⁃ＬＳＴＭ⁃Ａｔｔｅｎｔｉｏｎ，通过最大预测偏差和均方根误差（ＲＭＳＥ）评估模型的预测性能。 通过选

择 １ ～ ７ ｄ 的滞后天数，探讨不同滞后天数对预测性能的影响。 结果　 在短期和长期预测中，ＣＮＮ⁃ＬＳＴＭ⁃Ａｔｔｅｎｔｉｏｎ 融合模型

（短期：１. ５ 和 ０. ６；长期：８. ３ 和 ２. ５）的最大预测偏差和 ＲＭＳＥ 均优于 ＬＳＴＭ 模型（短期：２. ８ 和 １. ２；长期：１９. ５ 和 ５. ５）和 ＣＮＮ⁃
ＬＳＴＭ 模型（短期：２. ０ 和 ０. ８；长期：１１. ２ 和 ３. ３）。 纳入滞后天数后，滞后 ３ ｄ（短期：０. ７ 和 ０. ４；长期：５. ５ 和 １. ９）和 ５ ｄ（短期：
０. ８ 和 ０. ３；长期：６. ５ 和 ２. ０）在短期和长期预测中的最大预测偏差和 ＲＭＳＥ 均小于滞后 ０ ｄ（短期：１. ５ 和 ０. ６；长期：８. ３ 和

２. ５）。 滞后 １ ｄ（１. ５ 和 ０. ８）和 ７ ｄ（１. ９ 和 ０. ９）在短期预测中的最大预测偏差和 ＲＭＳＥ 均大于滞后 ０ ｄ。 在长期预测中，滞后

１ ｄ（６. ８ 和 ２. ４）的两项指标低于滞后 ０ ｄ，高于滞后 ３ ｄ 和 ５ ｄ，滞后 ７ ｄ 的最大预测偏差（７. ５）低于滞后 ０ ｄ，但 ＲＭＳＥ（２. ７）高
于滞后 ０ ｄ。 结论　 建立的 ＣＮＮ⁃ＬＳＴＭ⁃Ａｔｔｅｎｔｉｏｎ 融合模型对缺血性脑卒中发病具有较好的预测性，可为医疗资源合理配置提

供参考。
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　 　 缺血性脑卒中致死和致残率高，对公共健康构

成了重大挑战，精准预测其发病风险是优化脑卒中

防控的关键［１ － ２］。 基于临床特征的预测是通过统计

学或机器学习算法评估缺血性脑卒中发生的可能

性［３］，但其未能充分考虑动态气象因素等外部环境

变量的影响。 基于环境因素的预测虽发现 ＰＭ２. ５、气
温等与缺血性脑卒中发病显著相关［４］，但缺乏对气

象变化与临床特征等多因素的综合分析。 因此，研
究融合个体临床特征与环境动态因素的综合预测方

法对于提升预测准确性与可靠性具有重要价值。
　 　 以深度学习为代表的人工智能方法在时序数据

分析中表现突出，能够有效捕捉时间依赖关系，广泛

应用于医疗序列数据的再分析［５］。 脑卒中数据有

显著时序特征，分析其变化规律可为发病预测提供

参考。 在此基础上，该研究构建了卷积神经网络

（ｃｏｎｖｏｌｕｔｉｏｎａｌ ｎｅｕｒａｌ ｎｅｔｗｏｒｋ，ＣＮＮ）与长短期记忆网

络（ ｌｏｎｇ ｓｈｏｒｔ⁃ｔｅｒｍ ｍｅｍｏｒｙ， ＬＳＴＭ） 与注意力机制

（Ａｔｔｅｎｔｉｏｎ）融合的模型（ＣＮＮ⁃ＬＳＴＭ⁃Ａｔｔｅｎｔｉｏｎ）， 通

过分析患者临床资料与空气污染、气象等数据，实现

脑卒中发病预测，为优化脑卒中防控提供参考。

１　 材料与方法

１． １　 病例资料　 本研究回顾性收集天津医科大学

第二医院神经内科 ２０２３ 年 ４ 月 ３０ 日—２０２４ 年 ４ 月

２９ 日诊断为急性缺血性脑卒中的 １ ３４５ 例住院患

者。 纳入标准：① 年龄 ≥ １８ 岁；② 经头颅计算机

断层扫描或磁共振成像诊断为急性缺血性脑卒中，
符合《中国急性缺血性脑卒中诊治指南 ２０２３》中的

诊断标准［６］；③ 临床病历资料完整。 排除标准：①
入院时发病时间超过 ３ ｄ；② 合并急性心肌梗死；③
合并严重肝肾功能障碍；④ 合并恶性肿瘤患者。 最

终共纳入 １ ０３８ 例符合标准的患者，年龄为（７０. ８０
± １１. ３４）岁，其中男性 ５９９ 例（５７. ７１％ ）。
１． ２　 资料采集

１． ２． １　 基线资料　 纳入患者入院后 ２４ ｈ 内采集的

首次实验室检查结果，主要记录其性别、年龄、既往

史、收缩压和舒张压。 同时收集患者入院时的血常
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规、肝功能、肾功能、血脂、空腹血糖（ ｆａｓｔｉｎｇ ｂｌｏｏｄ
ｇｌｕｃｏｓｅ， ＦＢＧ ） 及 同 型 半 胱 氨 酸 （ ｈｏｍｏｃｙｓｔｅｉｎｅ，
ＨＣＹ）等实验室指标。 其中血常规包括白细胞计数

（ｗｈｉｔｅ ｂｌｏｏｄ ｃｅｌｌ ｃｏｕｎｔ， ＷＢＣ）、红细胞计数 （ ｒｅｄ
ｂｌｏｏｄ ｃｅｌｌ ｃｏｕｎｔ， ＲＢＣ）、 血 红 蛋 白 （ ｈｅｍｏｇｌｏｂｉｎ，
ＨＧＢ）和血小板计数（ｐｌａｔｅｌｅｔ ｃｏｕｎｔ， ＰＬＴ）。 肝功能

包括丙氨酸氨基转移酶 （ ａｌａｎｉｎｅ ａｍｉｎｏｔｒａｎｓｆｅｒａｓｅ，
ＡＬＴ） 和天门冬氨酸氨基转移酶 （ ａｓｐａｒｔａｔｅ ａｍｉｎ⁃
ｏｔｒａｎｓｆｅｒａｓｅ， ＡＳＴ）。 肾功能包括血尿素氮（ｂｌｏｏｄ ｕ⁃
ｒｅａ ｎｉｔｒｏｇｅｎ， ＢＵＮ）和肌酐（ｃｒｅａｔｉｎｉｎｅ， Ｃｒ）。 血脂包

括三酰甘油（ｔｒｉｇｌｙｃｅｒｉｄｅｓ， ＴＧ）、总胆固醇（ ｔｏｔａｌ ｃｈｏ⁃
ｌｅｓｔｅｒｏｌ， ＴＣ）、高密度脂蛋白胆固醇（ｈｉｇｈ⁃ｄｅｎｓｉｔｙ ｌｉｐ⁃
ｏｐｒｏｔｅｉｎ， ＨＤＬ）、低密度脂蛋白胆固醇（ ｌｏｗ⁃ｄｅｎｓｉｔｙ
ｌｉｐｏｐｒｏｔｅｉｎ， ＬＤＬ） 和极低密度脂蛋白胆固醇 （ ｖｅｒｙ
ｌｏｗ⁃ｄｅｎｓｉｔｙ ｌｉｐｏｐｒｏｔｅｉｎ， ＶＬＤＬ）。
１． ２． ２　 气象和污染物资料 　 收集 ２０２３ 年 ４ 月 ３０
日—２０２４ 年 ４ 月 ２９ 日期间天津市的气象和污染物

数据，气象因素数据来源于国家气象科学数据中心

（ｈｔｔｐｓ： ／ ／ ｄａｔａ． ｃｍａ． ｃｎ ／ ），主要包括日最高、最低和

平均温度、日平均风速和日平均相对湿度。 同期大

气污染物数据来源于天津市空气质量数据 ＧＢＱ（ｈｔ⁃
ｔｐｓ： ／ ／ ｃｉｔｙｄｅｖ． ｇｂｑｙｕｎ． ｃｏｍ ／ ｄａｔａ ／ ｔｉａｎｊｉｎ），主要包括

细颗粒物（ ｆｉｎｅ ｐａｒｔｉｃｕｌａｔｅ ｍａｔｔｅｒ ２. ５， ＰＭ２. ５ ）、可吸

入颗粒物（ ｉｎｈａｌａｂｌｅ ｐａｒｔｉｃｕｌａｔｅ ｍａｔｔｅｒ １０， ＰＭ１０）、臭
氧（ｏｚｏｎｅ， Ｏ３）、二氧化硫（ ｓｕｌｆｕｒ ｄｉｏｘｉｄｅ， ＳＯ２ ）、一
氧化碳（ｃａｒｂｏｎ ｍｏｎｏｘｉｄｅ， ＣＯ）和二氧化氮（ｎｉｔｒｏｇｅｎ
ｄｉｏｘｉｄｅ， ＮＯ２）。 在建立模型时，将当日入院患者的

临床资料匹配当日气象数据，在验证滞后效应时，分
别将临床资料与前 １ ～ ７ ｄ 的气象数据进行匹配。
１． ２． ３　 算法模型原理

１． ２． ３． １ 　 ＣＮＮ　 ＣＮＮ 是一种深度学习算法，通过

卷积层提取输入数据的局部特征，并通过池化层进

行降维，从而实现数据的层级抽象［７］。 ＣＮＮ 在图像

处理和时序数据中表现出色，能够自动从复杂数据

中提取重要特征。 对于卒中临床时序数据，ＣＮＮ 能

有效捕捉其时空特征，确保特征提取过程的自洽性。
具体而言，卷积核是 ＣＮＮ 结构执行特征提取的关

键，每个卷积层通过权值共享来提取输入样本的特

征，从而实现局部特征的提取和降维。 其中，第 ｌ 层
的卷积运算输出值为：

ｙｌ ＝ ∑
ｃｌ － １

ｉ ＝ １
ｗ ｌ

ｉ，ｃｘｌ － １
ｉ

　 　 式中，ｃｌ － １：上一层的第 ｃ 个通道；ｘｌ － １
ｉ ：第 ｉ 个通

道的输入量；ｗ ｌ
ｉ，ｃ：第 ｌ 层卷积核的权重矩阵。

　 　 池化层通过减少特征向量的维度，帮助防止模

型在预测时出现过拟合现象。 以全局平均池化为

例，假设输入特征的尺寸为宽度（Ｗ） × 高度（Ｈ）
× 通道数（Ｃ）。 在这种情况下，全局平均池化对于

每个通道，会对该通道内的所有元素进行平均计算。
具体的计算公式为：

ｙｌ（ ｉ，ｊ） ＝ １
Ｗ × Ｈ∑Ｗ

ｉ ＝ １∑Ｈ
ｊ ＝ １ｘｌ（ ｉ，ｊ）

　 　 式中，ｘｌ（ ｉ，ｊ）：ｌ 层中第 ｉ 个通道的第 ｊ 个神经元的

输入值。
　 　 此外，在 ＣＮＮ 结构的具体应用中，通常会在网

络末端添加一个全连接层。 全连接层的作用是将提

取到的局部特征整合为全局特征，并通过加权组合

后，生成最终的输出。 具体而言，第 ｌ ＋ １ 层第 ｊ 个神

经元输出值为：

ｙｌ ＋ １ ｊ ＝ ∑
ｎ

ｉ ＝ １
ｗ ｌ

ｉ，ｊｘｌ（ ｉ）

　 　 式中，ｘｌ（ ｉ）：ｌ 层中第 ｊ 个神经元的输入值；ｗ ｌ
ｉ，ｃ：ｌ

层中第 ｉ 个神经元和下一层中第 ｊ 个神经元之间的

权重。
１． ２． ３． ２　 ＬＳＴＭ 　 ＬＳＴＭ 是一种特殊的循环神经网

络，能够有效解决传统循环神经网络在处理长时序

数据时的梯度消失和爆炸问题［８］。 该模型通过引

入遗忘门、输入门和输出门来控制信息的传递和保

留，使其能记住长期依赖关系。 其具体结构如图 １
所示。 对于卒中临床时序数据和环境危险因素数

据，ＬＳＴＭ 能够有效捕捉数据中的长期时间依赖性，
并精准提取关键特征，展现出较强的分析和学习能

力，特别适用于处理临床时间序列数据。
　 　 根据图 １ 可知，在每个训练时间步中，ＬＳＴＭ 网

络首先接受当前时刻 ｔ 的输入和上一时刻 ｔ － １ 的隐

藏状态 ｈｔ － １，通过 Ｓｉｇｍｏｉｄ 函数经过遗忘门进行处

理，计算公式如下：

ｆｔ ＝ σ（ｗ ｆ［ｈｔ － １，ｘｔ］ ＋ ｂｔ），σ（ｘ） ＝ １
１ ＋ ｅ － ｘ

　 　 式中，ｗ ｆ：遗忘门的权重矩阵；ｂｔ：遗忘门的偏置

矩阵。
　 　 输入门根据当前时刻 ｔ 的输入 ｘｉ 和上一时刻 ｔ
－ １ 的隐藏状态 ｈｔ － １ 的信息，选择性决定将目标信

储层到细胞状态 Ｃ ｔ 中，计算公式如下：
ｑｔ ＝ σ（ｗｑ［ｈｔ － １，ｘｔ］ ＋ ｂｑ）

ａｔ ＝ ｔａｎｈ（ｗｃ［ｈｔ － １，ｘｔ］ ＋ ｂｃ），ｔａｎｈ（ｘ） ＝ ｅｘ － ｅ － ｘ

ｅｘ ＋ ｅ － ｘ

Ｃ ｔ ＝ ｆｔＣ ｔ － １ ＋ ｑｔ ＋ ａｔ

　 　 式中，ｑｔ：输入门的输出；ｗｑ：输入门的权重矩
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阵；ｂｑ：输入门的偏置矩阵；ａｔ：输入节点的输出；ｗｃ：
输入节点的权重矩阵；ｂｃ：输入节点的偏置矩阵；Ｃ ｔ

和 Ｃ ｔ － １分别为 ｔ 时刻和 ｔ － １ 时刻的单元状态。
　 　 输出门确定当前细胞状态中有多少信息将被用

作当前的输出或隐藏状态 ｈｔ，计算公式如下：
σｔ ＝ σ（ｗｏ［ｈｔ － １，ｘｔ］ ＋ ｂ０）

ｈｔ ＝ Ｏｔ ｔａｎｈ（Ｃ ｔ － ｉ）
　 　 式中，Ｏｔ：输出门的输出；ｗｏ：输出门的权重矩

阵；ｂ０：输出门的偏置矩阵。
１． ２． ３． ３　 Ａｔｔｅｎｔｉｏｎ　 Ａｔｔｅｎｔｉｏｎ 是一种通过为输入序

列中的每个元素分配动态权重的技术，使模型能够

专注于最相关的信息［９］。 它通过动态调整关注点

来优化信息处理，尤其在处理复杂数据时具有显著

优势。 对于缺血性脑卒中临床数据和同期气象数据

和污染物数据，Ａｔｔｅｎｔｉｏｎ 能够有效识别并聚焦于关

键因素，从而提升特征学习性能。 注意力机制结构

见图 ２ 所示。 Ａｔｔｅｎｔｉｏｎ 的结构通常包括四个关键子

模块：① 查询向量：代表当前步骤的隐状态，用于向

模型提供当前时刻的上下文信息。 ② 键向量：表示

输入序列的特征，用于与查询向量进行匹配，以决定

哪些输入信息更为相关。 ③ 值向量：表示输入序列

中的具体信息，用于最终生成模型的输出。 ④ 注意

力权重：通过加权点积得分函数计算查询向量和键

向量的相似度来获得，反映了每个输入元素在当前

任务中的重要性。
　 　 具体而言，加权点积得分函数是点积得分函数

图 １　 ＬＳＴＭ 框架原理

Ｆｉｇ． １　 Ｐｒｉｎｃｉｐｌｅ ｏｆ ＬＳＴＭ ｆｒａｍｅｗｏｒｋ

图 ２　 Ａｔｔｅｎｔｉｏｎ 结构图

Ｆｉｇ． ２　 Ｓｔｒｕｃｔｕｒｅ ｄｉａｇｒａｍ ｏｆ ａｔｔｅｎｔｉｏｎ ｍｅｃｈａｎｉｓｍ
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的变体，通过对点积结果进行缩放来避免数值过大

或过小的问题，计算公式为：

ｓｃｏｒｅ（Ｑ，Ｋ） ＝ Ｑ·ＫＴ

ｄｋ

　 　 式中，Ｑ：查询向量；Ｋ：键向量；ｄｋ：键向量的维

度。
　 　 通过查询向量、键向量、值向量和注意力权重四

个模块的协同工作，Ａｔｔｅｎｔｉｏｎ 能够动态地选择性关

注输入序列中最相关的部分，尤其在处理卒中临床

数据、气象数据和污染物数据时，能够自动识别并聚

焦于关键因素，从而提升模型的特征学习和预测性

能。 这使得模型在复杂的时序数据分析和多模态数

据处理中，能够更精确地提取有价值的信息，改善预

测结果。
１． ２． ３． ４ 　 ＣＮＮ⁃ＬＳＴＭ⁃Ａｔｔｅｎｔｉｏｎ 融合模型 　 结合

ＣＮＮ、ＬＳＴＭ 和 Ａｔｔｅｎｔｉｏｎ 模型的优势，建立一种高效

的融合模型。 具体而言，ＣＮＮ 层用于提取临床数

据、气象数据中的空间特征，能够自动识别原始数据

中的关键局部模式；ＬＳＴＭ 层则主要用于捕捉气象

数据与临床数据之间的时间相关性，有效建模时序

数据的长期依赖关系；Ａｔｔｅｎｔｉｏｎ 进一步提升了模型

的特征学习能力，通过为输入变量动态分配权重，帮
助模型聚焦于最具影响力的特征，从而增强了对关

键因素的识别和预测精度。 该 ＣＮＮ⁃ＬＳＴＭ⁃Ａｔｔｅｎｔｉｏｎ
融合模型能够结合气象变量与临床数据的时空特

征，准确预测未来周期内的缺血性脑卒中发病风险。

通过这种综合性方法，模型不仅提高了预测性能，还
能够提供更为细致的预测信息。 该模型的具体预测

流程见图 ３ 所示，展示了各个模块如何协同工作，以
实现对缺血性脑卒中发病风险的精准预测。
１． ３　 模型评价指标 　 通过均方根误差（ ｒｏｏｔ ｍｅａｎ
ｓｑｕａｒｅｄ ｅｒｒｏｒ，ＲＭＳＥ）和最大预测偏差进行模型效果

的评价，表示模型预测值与实际值之间的误差大小，
误差越小表示模型效果越好。
１． ４ 　 统计学处理 　 Ｐｙｔｈｏｎ ３. ９. ０ 用于建立预测模

型。 ＳＰＳＳ ２６. ０ 用于统计学分析，分别用均数 ± 标

准差（�ｘ ± ｓ）、中位数（Ｐ５０）、上四分位数（Ｐ２５）和下四

分位数（Ｐ７５）描述连续变量，使用频数（ｎ）和百分比

（％ ）描述分类变量。

２　 结果

２． １　 一般特征　 使用描述性统计方法对收集数据

进行总结和量化描述，以获取研究样本的整体数据

趋势和分布特征。 根据纳入排除标准，在 ２０２３ 年 ４
月 ３０ 日—２０２４ 年 ４ 月 ２９ 日观察期间内，急性缺血

性脑卒中日平均入院人次为（４. ３ ± ２. ０）人次。 平

均温度为 （ １４. ５８ ± １２. ８１ ）℃，平均相对湿度为

（６２. ８４ ± ２３. ７８）％ ，ＳＯ２、ＮＯ２、ＰＭ２. ５、ＰＭ１０ 和 Ｏ３ 日

均浓度分别为 （７. ４８ ± ２. １５）、 （３４. ２６ ± １７. ００）、
（４０. ９５ ± ３２. ３１ ）、 （７６. ８３ ± ５０. ８１ ） 和 （１０９. ６８ ±
５６. １６） μｇ ／ ｍ３，ＣＯ 日均浓度为 （０. ６９ ± ０. ２５） ｍｇ ／
ｍ３。 基本情况详见表 １。

图 ３　 ＣＮＮ⁃ＬＳＴＭ⁃Ａｔｔｅｎｔｉｏｎ 模型框架原理

Ｆｉｇ． ３　 Ｐｒｉｎｃｉｐｌｅ ｏｆ ＣＮＮ⁃ＬＳＴＭ⁃Ａｔｔｅｎｔｉｏｎ ｍｏｄｅｌ ｆｒａｍｅｗｏｒｋ
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表 １　 人口学特征、实验室指标、污染物及气象参数基本情况

Ｔａｂ． １　 Ｂａｓｅｌｉｎｅ ｃｈａｒａｃｔｅｒｉｓｔｉｃｓ ｏｆ ｄｅｍｏｇｒａｐｈｉｃｓ， ｌａｂｏｒａｔｏｒｙ ｍｅａｓｕｒｅｓ， ｐｏｌｌｕｔａｎｔｓ， ａｎｄ ｍｅｔｅｏｒｏｌｏｇｉｃａｌ ｆａｃｔｏｒｓ

Ｆａｃｔｏｒ ｎ （％ ） �ｘ ± ｓ Ｐ２５ Ｐ５０ Ｐ７５

Ｉｎｄｉｖｉｄｕａｌ ｂａｓｉｃ ｆｅａｔｕｒｅ
　 Ｍａｌｅ ５９９ （５７． ７１） － － － －
　 Ｈｙｐｅｒｔｅｎｓｉｏｎ ８９５ （８６． ２２） － － － －
　 Ｄｉａｂｅｔｅｓ ４３６ （４２． ００） － － － －
　 Ｃｏｒｏｎａｒｙ ｈｅａｒｔ ｄｉｓｅａｓｅ ３３６ （３２． ３７） － － － －
　 Ｃｅｒｅｂｒａｌ ｉｎｆａｒｃｔｉｏｎ ３１３ （３０． １５） － － － －
　 Ａｇｅ （ｙｅａｒｓ） － １４９． ４８ ± ２２． ８３ １３５ １４９ １６５
　 ＳＢＰ （ｍｍＨｇ） － ８６． ０５ ± ２５． ８８ ７７ ８５ ９５
　 ＤＢＰ （ｍｍＨｇ） － ８６． １５ ± ２４． ２２ ７８ ８２ ９４
Ｂｌｏｏｄ ｔｅｓｔｉｎｇ ｉｎｄｉｃａｔｏｒｓ
　 ＷＢＣ （ × １０９ ／ Ｌ） － ７． ６０ ± ２． ９９ ５． ６４ ６． ９６ ８． ５８
　 ＲＢＣ （ × １０１２ ／ Ｌ） － ４． ２２ ± ０． ６７ ３． ８６ ４． ２７ ４． ６６
　 ＨＧＢ （ｇ ／ Ｌ） － １２７． ６７ ± ２１． ５１ １１６ １３０ １４２
　 ＰＬＴ （ × １０９ ／ Ｌ） － ２１７． ９４ ± ７５． １５ １７３ ２０７ ２５５
　 ＴＧ （ｍｍｏｌ ／ Ｌ） － １． ５０ ± ０． ９６ ０． ９４ １． ２５ １． ７７
　 ＴＣ （ｍｍｏｌ ／ Ｌ） － ４． ６１ ± １． ３２ ３． ７２ ４． ５５ ５． ３８
　 ＨＤＬ （ｍｍｏｌ ／ Ｌ） － １． １４ ± ０． ３５ ０． ９０ １． １０ １． ３２
　 ＬＤＬ （ｍｍｏｌ ／ Ｌ） － ２． ９６ ± １． ０７ ２． １９ ２． ８８ ３． ６３
　 ＶＬＤＬ （ｍｍｏｌ ／ Ｌ） － ０． ５１ ± ０． ３１ ０． ３２ ０． ４６ ０． ６３
　 ＦＢＧ （ｍｍｏｌ ／ Ｌ） － ７． １０ ± ３． ５２ ４． ８９ ６． ００ ７． ８７
　 ＡＬＴ （Ｕ ／ Ｌ） － ２０． ８９ ± ４２． ３９ １０． ４０ １４． ６０ ２１． ７３
　 ＡＳＴ （Ｕ ／ Ｌ） － ２１． ４１ ± ３３． １９ １３． ００ １６． １０ ２１． ２０
　 ＢＵＮ （ｍｍｏｌ ／ Ｌ） － ７． ０８ ± ４． ８３ ４． ８０ ５． ９０ ７． ６３
　 Ｃｒ （μｍｏｌ ／ Ｌ） － ９７． ２３ ± １２７． ４６ ５８． ８０ ７２． ９０ ９０． ６０
　 ＨＣＹ （μｍｏｌ ／ Ｌ） － ３２７． ００ ± １１０． ２６ ２５２． ２０ ３１７． １０ ３８３． ８５
Ａｉｒ ｐｏｌｌｕｔａｎｔ ｉｎｄｉｃａｔｏｒｓ
　 ＰＭ２． ５（μｇ ／ ｍ３） － ４０． ９５ ± ３２． ３１ １９． ００ ３２． ００ ５０． ７５
　 ＰＭ１０（μｇ ／ ｍ３） － ７６． ８３ ± ５０． ８１ ４２． ００ ６２． ５０ ９２． ７５
　 Ｏ３（μｇ ／ ｍ３） － １０９． ６８ ± ５６． １６ ６５． ５０ ９８． ００ １４９． ００
　 ＳＯ２（μｇ ／ ｍ３） － ７． ４８ ± ２． １５ ６． ００ ７． ００ ９． ００
　 ＣＯ （ｍｇ ／ ｍ３） － ０． ６９ ± ０． ２５ ０． ５０ ０． ６０ ０． ８０
　 ＮＯ２（μｇ ／ ｍ３） － ３４． ２６ ± １７． ００ ２１． ００ ３０． ５０ ４２． ７５
Ｍｅｔｅｏｒｏｌｏｇｉｃａｌ ｉｎｄｉｃａｔｏｒｓ
　 Ｄａｉｌｙ ａｖｅｒａｇｅ ｔｅｍｐｅｒａｔｕｒｅ （℃） － １４． ５８ ± １２． ８１ ２． ３０ １７． １０ ２６． ００
　 Ｄａｉｌｙ ｍａｘｉｍｕｍ ｔｅｍｐｅｒａｔｕｒｅ （℃） － １５． ０８ ± １２． ７９ ２． ８０ １７． ７０ ２６． ５０
　 Ｄａｉｌｙ ｍｉｎｉｍｕｍ ｔｅｍｐｅｒａｔｕｒｅ （℃） － １４． ０８ ± １２． ８５ １． ８０ １６． ５０ ２５． ６０
　 Ｄａｉｌｙ ａｖｅｒａｇｅ ｒｅｌａｔｉｖｅ ｈｕｍｉｄｉｔｙ （％ ） － ６２． ８４ ± ２３． ７８ ４３． ００ ６５． ００ ８３． ００
　 Ｄａｉｌｙ ａｖｅｒａｇｅ ｗｉｎｄ ｓｐｅｅｄ （ｍ ／ ｓ） － ２． ０８ ± １． ４４ １． ００ １． ７０ ２． ８０

２． ２　 算法可行性实验与分析　 本研究对所建立的

模型在实际应用中的可行性进行了验证。 通过结合

验证集，评估了模型在处理临床数据、气象数据和污

染物数据等多元信息时的适应性和稳健性。 在本研

究的实验中，纳入 ２０２３ 年 ４ 月 ３０ 日—２０２４ 年 ４ 月

２９ 日的数据作为研究数据，将其划分为训练集

（２０２３ 年 ４ 月 ３０ 日—２０２４ 年 ３ 月 ８ 日，黑线所示）
和验证集（２０２４ 年 ３ 月 ８ 日—２０２４ 年 ４ 月 ２９ 日，蓝
线所示），用于预测模型的验证。 具体验证结果如

图 ４ 所示。
　 　 从图 ４ 可以看出，蓝线与黑线趋势较为接近，表

明所提出模型对验证集中日入院数的预测效果总体

较好。 进一步分析预测结果可见，距离初始预测时

间较近的预测值与实际值更为吻合，而随着预测时

间延后，预测值逐渐偏离实际值。 因此，可以认为该

模型在验证集上表现出前期预测性能较好，后期预

测性能有所下降的特点。 根据这一结果，本研究以

２０２４ 年 ３ 月 ８ 日作为预测起点，将前期预测性能相

对稳定的阶段定义为短期预测，后期相对波动的阶

段定义为长期预测。 从图 ４ 可见，蓝线自 ３ 月 ２３ 日

左右开始波动较前明显，因此将 ３ 月 ８ 日—３ 月 ２３
日这 １５ ｄ 作为短期预测期，此后的时间段则划分为
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图 ４　 ＣＮＮ⁃ＬＳＴＭ⁃Ａｔｔｅｎｔｉｏｎ 模型的预测值与实际值分布图

Ｆｉｇ． ４　 Ｄｉｓｔｒｉｂｕｔｉｏｎ ｐｌｏｔ ｏｆ ｐｒｅｄｉｃｔｅｄ ａｎｄ ａｃｔｕａｌ ｖａｌｕｅｓ ｏｆ ＣＮＮ⁃ＬＳＴＭ⁃Ａｔｔｅｎｔｉｏｎ ｍｏｄｅｌ

长期预测期。 ＣＮＮ⁃ＬＳＴＭ⁃Ａｔｔｅｎｔｉｏｎ 融合模型既适用

于短期预测，也能够应对较长周期的风险预测，该模

型在实际应用中具备较强的适应性和稳健性，能够

处理多种类型的数据并提供有效的预测支持。
２． ３　 算法预测性能实验与分析 　 三种模型（ＣＮＮ⁃
ＬＳＴＭ⁃Ａｔｔｅｎｔｉｏｎ、ＬＳＴＭ 和 ＣＮＮ⁃ＬＳＴＭ）对缺血性脑卒

中日入院人数的预测值与实际值之间的差异见图

５。 其中，深蓝线、浅蓝线和绿线分别表示 ＣＮＮ⁃
ＬＳＴＭ⁃Ａｔｔｅｎｔｉｏｎ 模型、ＬＳＴＭ 模型和 ＣＮＮ⁃ＬＳＴＭ 模型

基于 ２０２３ 年 ４ 月 ３０ 日—２０２４ 年 ３ 月 ８ 日的数据训

练后，对 ２０２４ 年 ３ 月 ８ 日—４ 月 ２９ 日期间日入院数

的预测结果。 预测性能通过最大预测偏差和 ＲＭＳＥ
进行量化评估（表 ２）。
　 　 结果显示，短期预测中，ＬＳＴＭ 模型最大预测偏

差和 ＲＭＳＥ 分别为 ２. ８ 和 １. ２，ＣＮＮ⁃ＬＳＴＭ 模型分别

为 ２. ０ 和 ０. ８，而 ＣＮＮ⁃ＬＳＴＭ⁃Ａｔｔｅｎｔｉｏｎ 融合模型分

别为 １. ５ 和 ０. ６。 在长期预测中，ＬＳＴＭ 模型最大预

测偏差和预测 ＲＭＳＥ 分别为 １９. ５ 和 ５. ５， ＣＮＮ⁃
ＬＳＴＭ 模型分别为 １１. ２ 和 ３. ３，ＣＮＮ⁃ＬＳＴＭ⁃Ａｔｔｅｎｔｉｏｎ
融合模型分别为 ８. ３ 和 ２. ５。 结果表明，无论在短

期还是长期预测中，本研究建立的融合模型均表现

最佳，ＣＮＮ⁃ＬＳＴＭ 模型次之，ＬＳＴＭ 模型的预测误差

最大。
　 　 模型训练的收敛性见图 ６ 所示，其中训练轮次

指模型训练的总次数，损失指单轮次中模型预测值

与实际之间的损失值。 结果显示，所建立 ＣＮＮ⁃
ＬＳＴＭ⁃Ａｔｔｅｎｔｉｏｎ 融合模型的收敛速度显著优于其他

两个模型，在相同数据集上，建立的模型不仅收敛边

界点（即图中损失曲线拐点）出现得较早，而且收敛

的下限也低于其他两种模型，表明该模型在训练过

程中的稳定性和效率较高。
２ ． ４　 不同滞后时间窗口对预测性能的影响实验与

表 ２　 ３ 种模型在长短周期内的预测性能

Ｔａｂ． ２　 Ｐｒｅｄｉｃｔｉｏｎ ｐｅｒｆｏｒｍａｎｃｅ ｏｆ ｔｈｒｅｅ ｍｏｄｅｌｓ ｉｎ ｌｏｎｇ ａｎｄ ｓｈｏｒｔ ｔｅｒｍｓ

Ｐｒｅｄｉｃｔｉｏｎ ｍｏｄｅｌ
Ｍａｘｉｍｕｍ ｐｒｅｄｉｃｔｉｏｎ ｅｒｒｏｒｓ

Ｓｈｏｒｔ ｔｅｒｍ Ｌｏｎｇ ｔｅｒｍ
ＲＭＳＥ

Ｓｈｏｒｔ ｔｅｒｍ Ｌｏｎｇ ｔｅｒｍ
ＬＳＴＭ ２． ８ １９． ５ １． ２ ５． ５
ＣＮＮ⁃ＬＳＴＭ ２． ０ １１． ２ ０． ８ ３． ３
ＣＮＮ⁃ＬＳＴＭ⁃Ａｔｔｅｎｔｉｏｎ １． ５ ８． ３ ０． ６ ２． ５
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图 ５　 三种模型在长期和短期内预测值与实际值的差异表现

Ｆｉｇ． ５　 Ｐｒｅｄｉｃｔｉｖｅ ｐｅｒｆｏｒｍａｎｃｅ ｃｏｍｐａｒｉｓｏｎ ｏｆ ｔｈｒｅｅ ｍｏｄｅｌｓ ｉｎ ｌｏｎｇ⁃ｔｅｒｍ ａｎｄ ｓｈｏｒｔ⁃ｔｅｒｍ ｆｏｒｅｃａｓｔｉｎｇ ａｇａｉｎｓｔ ａｃｔｕａｌ ｖａｌｕｅｓ

图 ６　 三种模型的训练损失分布

Ｆｉｇ． ６　 Ｔｒａｉｎｉｎｇ ｌｏｓｓ ｄｉｓｔｒｉｂｕｔｉｏｎ ｏｆ ｔｈｅ ｔｈｒｅｅ ｍｏｄｅｌｓ

分析　 图 ７ 展示了滞后尺度为 １、３、５ 和 ７ ｄ 时，所
建立的模型在长期预测中的预测偏差分布情况。 可

以看出，在 １ ｄ 和 ７ ｄ 的滞后尺度下，预测值与实际

值之间的偏差呈现随机不均匀分布，且最大预测偏

差较大，相同偏差值对应的出现频率也高于其他滞

后窗口；而在滞后 ３ ｄ 和 ５ ｄ 的尺度下，模型预测值

和实际值之间的偏差分布较为均匀，最大偏差较小。
此外，表 ３ 中列出了 ５ 个滞后尺度下最大预测偏差

和 ＲＭＳＥ 的量化评估结果。 结果显示，纳入滞后天

数后，短期预测中滞后 ３ ｄ （最大预测偏差：０. ７，
ＲＭＳＥ：０. ４）和 ５ ｄ（最大预测偏差：０. ８，ＲＭＳＥ：０. ３）
的最大预测偏差和 ＲＭＳＥ 均小于滞后 ０ ｄ（１. ５ 和

０. ６）；而滞后 １ ｄ（１. ５ 和 ０. ８）和 ７ ｄ（１. ９ 和 ０. ９）的
两项指标均大于滞后 ０ ｄ。 在长期预测中，滞后 ３ ｄ
（５. ５ 和 １. ９）和 ５ ｄ（６. ５ 和 ２. ０）的最大预测偏差和

ＲＭＳＥ 同样小于滞后 ０ ｄ（８. ３ 和 ２. ５）；滞后 １ ｄ（６. ８
和 ２. ４）的两项指标低于滞后 ０ ｄ，高于滞后 ３ ｄ 和 ５
ｄ 的对应值；滞后 ７ ｄ 的最大预测偏差（７. ５）低于滞

后 ０ ｄ，但 ＲＭＳＥ（２. ７）高于滞后 ０ ｄ（２. ５）。 ＣＮＮ⁃
ＬＳＴＭ⁃Ａｔｔｅｎｔｉｏｎ 融合模型在滞后 ３ ｄ 的时间尺度上

表现最佳，滞后 ５ ｄ 次之，滞后 １ ｄ 和 ７ ｄ 表现最差。
这一结果进一步地说明了气象因素的滞后效应与缺

血性脑卒中发病之间存在较强的相关性。

３　 讨论

　 　 通过构建基于 ＣＮＮ⁃ＬＳＴＭ⁃Ａｔｔｅｎｔｉｏｎ 融合模型的

缺血性脑卒中发病风险预测模型，实现对多元信息

的深度融合和时空特征的充分挖掘。 结果表明，该
模型能够精准预测缺血性脑卒中风险的变化趋势，
与传统时间序列预测方法相比，本模型在相同预测

周期内展现出显著的精度优势，ＲＭＳＥ 值显著降低，
充分验证了其在脑卒中预测中的高效性。 通过纳入

气象因素的滞后效应，研究进一步验证了污染物与

气象数据对脑卒中发病的潜在影响，增强了模型的
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图 ７　 ＣＮＮ⁃ＬＳＴＭ⁃Ａｔｔｅｎｔｉｏｎ 模型在预测周期内的预测偏差

Ｆｉｇ． ７　 Ｐｒｅｄｉｃｔｉｏｎ ｅｒｒｏｒｓ ｏｆ ｔｈｅ ＣＮＮ⁃ＬＳＴＭ⁃Ａｔｔｅｎｔｉｏｎ ｍｏｄｅｌ ｄｕｒｉｎｇ ｔｈｅ ｐｒｅｄｉｃｔｉｏｎ ｐｅｒｉｏｄ
　 　 Ａ － Ｅ：Ｔｈｅ ｈｉｓｔｏｇｒａｍｓ ｏｆ ｔｈｅ ｍｏｄｅｌ ｐｒｅｄｉｃｔｉｏｎ ｅｒｒｏｒｓ ｆｏｒ ｌａｇ ｓｔｅｐ ｓｉｚｅｓ ｏｆ ０， １， ３， ５， ａｎｄ ７ ｄａｙｓ； Ｔｈｅ ｂａｒ ｃｈａｒｔ ｓｈｏｗｓ ｔｈｅ ｄｉｓｔｒｉｂｕｔｉｏｎ ｏｆ ｐｒｅｄｉｃｔｉｏｎ
ｅｒｒｏｒｓ， ｗｉｔｈ ｅｒｒｏｒ ｖａｌｕｅｓ ｏｎ ｔｈｅ ｈｏｒｉｚｏｎｔａｌ ａｘｉｓ ａｎｄ ｏｃｃｕｒｒｅｎｃｅ ｆｒｅｑｕｅｎｃｙ ｏｎ ｔｈｅ ｖｅｒｔｉｃａｌ ａｘｉｓ， ｗｈｉｌｅ ｔｈｅ ｃｕｒｖｅｓ ｒｅｐｒｅｓｅｎｔ ｔｈｅ ｎｏｒｍａｌ ｄｉｓｔｒｉｂｕｔｉｏｎ ｏｆ ｔｈｅ ｆｉｔｔｅｄ
ｅｒｒｏｒｓ．

表 ３　 ＣＮＮ⁃ＬＳＴＭ⁃Ａｔｔｅｎｔｉｏｎ 模型在长短周期内的预测性能

Ｔａｂ． ３　 Ｐｒｅｄｉｃｔｉｏｎ ｐｅｒｆｏｒｍａｎｃｅ ｏｆ ｔｈｅ ＣＮＮ⁃ＬＳＴＭ⁃Ａｔｔｅｎｔｉｏｎ ｍｏｄｅｌｓ ｉｎ ｌｏｎｇ ａｎｄ ｓｈｏｒｔ ｔｅｒｍｓ

Ｐｒｅｄｉｃｔｉｏｎ ｍｏｄｅｌ
Ｍａｘｉｍｕｍ ｐｒｅｄｉｃｔｉｏｎ ｅｒｒｏｒｓ

Ｓｈｏｒｔ ｔｅｒｍ Ｌｏｎｇ ｔｅｒｍ
ＲＭＳＥ

Ｓｈｏｒｔ ｔｅｒｍ Ｌｏｎｇ ｔｅｒｍ
Ｌａｇ ｗｉｎｄｏｗ ＝ ０ １． ５ ８． ３ ０． ６ ２． ５
Ｌａｇ ｗｉｎｄｏｗ ＝ １ １． ５ ６． ８ ０． ８ ２． ４
Ｌａｇ ｗｉｎｄｏｗ ＝ ３ ０． ７ ５． ５ ０． ４ １． ９
Ｌａｇ ｗｉｎｄｏｗ ＝ ５ ０． ８ ６． ５ ０． ３ ２． ０
Ｌａｇ ｗｉｎｄｏｗ ＝ ７ １． ９ ７． ５ ０． ９ ２． ７

实用价值和预测能力。
　 　 三种模型在性能上的差异主要源于其对数据特

征的处理方式不同。 ＬＳＴＭ 模型是一种特殊类型的

循环神经网络，适用于捕捉时间序列数据中的时序

依赖关系。 在气象因素对脑卒中发病预测的研究

中，Ｙａｎｇ ｅｔ ａｌ［１０］研究对比了 ＬＳＴＭ 模型和随机森林

模型的预测效果，发现 ＬＳＴＭ 模型在 ＲＭＳＥ 指标上

表现更优，表明其在结合气象数据进行脑卒中发病

预测时具有显著优势。 然而，ＬＳＴＭ 模型固有的固

定记忆单元结构在处理涉及多元因素的复杂数据时

存在局限性，可能限制模型性能。 为克服这一局限，
本研究引入 ＣＮＮ 模块来增强对多元数据的处理能

力。 Ｙｕ ｅｔ ａｌ［１１］ 研究证实了这一改进的有效性，利
用 ＣＮＮ 模型成功分析缺血性脑卒中患者发病前后

１２ 导联心电图数据，实现了对潜在心房颤动患者的

有效识别。 这种结合 ＣＮＮ 和 ＬＳＴＭ 优势的混合模

型能够同时考虑多元数据特征和时间序列特征。 另

一项研究［１２］在使用脑电图数据预测脑卒中发病的

研究中，通过对比单一 ＬＳＴＭ 模型和 ＣＮＮ⁃ＬＳＴＭ 混

合模型的性能，进一步验证了混合模型的优越性。
然而，尽管 ＣＮＮ⁃ＬＳＴＭ 能够捕捉这些信息，它在学

习和提取关键特征方面存在一定的不足，尤其是在

重点特征的关注与提炼上表现较弱。 因此，进一步

通过引入 Ａｔｔｅｎｔｉｏｎ 模型，不仅充分考虑了数据的多

元性，还通过 Ａｔｔｅｎｔｉｏｎ 对关键特征进行了强化学

习。 这种设计使模型能够更有效地捕捉数据中的潜

在规律与关键模式，从而在预测精度、模型稳定性和

收敛速度等方面展现出明显优势。
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　 　 缺血性脑卒中作为一种可防可控的疾病，其发

病受到空气污染物和气象因素的影响［１３］。 Ｌｉｕ ｅｔ
ａｌ［１４］对中国宁夏 ２２ 个县区的缺血性脑卒中患者进

行分析，发现高温、低相对湿度和 ＣＯ 对缺血性脑卒

中发病有协同作用。 Ｗａｎｇ ｅｔ ａｌ［１５］ 研究证实了同时

暴露于热浪与 Ｏ３ 会协同增加缺血性卒中死亡风险。
Ｌｉｕ ｅｔ ａｌ［１６］研究表明寒潮对缺血性卒中入院的影响

具有显著滞后效应，单日效应在滞后第 ７ 天出现，并
于滞后第 １４ 天达到最大值。 同样，Ｚｈａｏ ｅｔ ａｌ［１７］ 发
现极端低温在滞后 １４ ｄ 时与缺血性脑卒中的发生

相关性最大。 因此，本研究在分析滞后效应时，从滞

后 １ ｄ 开始探索气象因素对缺血性脑卒中发病的影

响规律。 研究结果显示，随着滞后时间的延长，模型

预测效能呈现先上升后下降的趋势，并在滞后 ７ ｄ
时出现明显下降。 为确保研究结果的科学性和可靠

性，本研究最终确定 ０ ～ ７ ｄ 的时间尺度作为分析窗

口，这与上述研究相符合。 该时间窗口既体现了缺

血性脑卒中发病与气象因素的累积效应，也有效避

免因滞后时间过长导致的预测性能下降，从而提升

模型的预测性能和实用性。
　 　 本研究构建的 ＣＮＮ⁃ＬＳＴＭ⁃Ａｔｔｅｎｔｉｏｎ 融合模型，
分析了气象数据、临床特征与缺血性脑卒中发病的

关联性，提升了缺血性脑卒中风险的预测准确性。
通过进一步引入不同滞后时间尺度进行模型预测实

验，验证了气象因素对缺血性脑卒中发病的时间滞

后效应，为医疗资源合理配置提供更合理的参考依

据。 该模型综合考量了临床特征与环境因素，在预

测性能上优于传统方法，表现出良好的应用潜力。
未来可通过融入影像数据及多中心数据，进一步探

索其在临床辅助决策与公共卫生干预中的应用价

值。
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