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Fig.1 Principle of LSTM framework
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Fig.2 Structure diagram of attention mechanism
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Fig.3 Principle of CNN-LSTM-Attention model framework
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Tab.1 Baseline characteristics of demographics, laboratory measures, pollutants, and meteorological factors
Factor n (%) xEs Pss P, Ps
Individual basic feature
Male 599 (57.71) - - - -
Hypertension 895 (86.22) - - - -
Diabetes 436 (42.00) - - - -
Coronary heart disease 336 (32.37) - - - -
Cerebral infarction 313 (30.15) - - - -
Age (years) - 149.48 +22.83 135 149 165
SBP (mmHg) - 86.05 +25.88 77 85 95
DBP (mmHg) - 86.15 £24.22 78 82 94
Blood testing indicators
WBC ( x10°/L) - 7.60 £2.99 5.64 6.96 8.58
RBC ( x10'2/L) - 4.22 £0.67 3.86 4.27 4.66
HGB (g/L) - 127.67 £21.51 116 130 142
PLT ( x10°/L) - 217.94 £75.15 173 207 255
TG (mmol/L) - 1.50 £0.96 0.94 1.25 1.77
TC (mmol/L) - 4.61 £1.32 3.72 4.55 5.38
HDL ( mmol/L) - 1.14 £0.35 0.90 1.10 1.32
LDL (mmol/L) - 2.96 £1.07 2.19 2.88 3.63
VLDL (mmol/L) - 0.51 £0.31 0.32 0.46 0.63
FBG (mmol/L) - 7.10 £3.52 4.89 6.00 7.87
ALT (U/L) - 20.89 £42.39 10.40 14.60 21.73
AST (U/L) - 21.41 +£33.19 13.00 16. 10 21.20
BUN (mmol/L) - 7.08 £4.83 4.80 5.90 7.63
Cr (pmol/L) - 97.23 £127.46 58.80 72.90 90. 60
HCY (pmol/L) - 327.00 £110.26 252.20 317.10 383.85
Air pollutant indicators
PM, 5 (pg/m’) - 40.95 £32.31 19.00 32.00 50.75
PM,O(ug/m3) - 76.83 £50.81 42.00 62.50 92.75
0; (pg/m*) - 109.68 +56. 16 65.50 98.00 149.00
S0, (pg/m®) - 7.48 £ 2.15 6.00 7.00 9.00
CO (mg/m’) - 0.69 £0.25 0.50 0.60 0.80
NO, (ng/m*) - 34.26 £17.00 21.00 30.50 42.75
Meteorological indicators
Daily average temperature ( °C) - 14.58 +12.81 2.30 17.10 26.00
Daily maximum temperature ( °C ) - 15.08 £12.79 2.80 17.70 26.50
Daily minimum temperature ( °C) - 14.08 +12.85 1.80 16.50 25.60
Daily average relative humidity (% ) - 62.84 +23.78 43.00 65.00 83.00
Daily average wind speed (m/s) - 2.08 £1.44 1.00 1.70 2.80
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B4 CNN-LSTM-Attention & MBNES ERESHE
Fig.4 Distribution plot of predicted and actual values of CNN-LSTM-Attention model
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Tab.2 Prediction performance of three models in long and short terms
e Maximum prediction errors RMSE
Prediction model
Short term Long term Short term Long term

LSTM 2.8 19.5 1.2 5.5

CNN-LSTM 2.0 11.2 0.8 3.3
CNN-LSTM-Attention 1.5 8.3 0.6 2.5
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Fig.5 Predictive performance comparison of three models in long-term and short-term forecasting against actual values
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Fig.6 Training loss distribution of the three models
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Fig.7 Prediction errors of the CNN-LSTM-Attention model during the prediction period

A - E:The histograms of the model prediction errors for lag step sizes of 0, 1, 3, 5, and 7 days; The bar chart shows the distribution of prediction

errors, with error values on the horizontal axis and occurrence frequency on the vertical axis, while the curves represent the normal distribution of the fitted

errors.
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Tab.3 Prediction performance of the CNN-LSTM-Attention models in long and short terms

Maximum prediction errors

RMSE

Prediction model

Short term Long term Short term Long term
Lag window =0 1.5 8.3 0.6 2.5
Lag window =1 1.5 6.8 0.8 2.4
Lag window =3 0.7 5.5 0.4 1.9
Lag window =5 0.8 6.5 0.3 2.0
Lag window =7 1.9 7.5 0.9 2.7
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Prediction of ischemic stroke incidence
based on CNN-LSTM-Attention model

Liu Jiaming' ,Zhou Xiao', Wang Fuyin',Sun Xiao',Xia Xiaoshuang' *,Li Xin''*
(' Dept of Neurology, The Second Hospital of Tianjin Medical University, Tianjin 300211
*Tianjin Center for Health and Meteorology Multidisciplinary Innovation, Tianjin 300211)

Abstract Objective To construct a deep learning model based on convolutional neural network ( CNN)-long
short term memory network ( LSTM) -Attention to explore the correlation between meteorological and clinical factors
and the incidence of ischemic stroke. Methods A fusion model CNN-LSTM-Attention based on CNN, LSTM, and
Attention was constructed by incorporating clinical data and meteorological data of ischemic stroke inpatients. The
predictive performance of the model was evaluated by maximum prediction error and root mean square error
(RMSE). The impact of different lag days on prediction performance was investigated by selecting lag periods ran-
ging from 1 to 7 days. Results In both short-term and long-term predictions, the CNN-LSTM-Attention fusion
model (short-term: 1.5 and 0. 6; long-term: 8.3 and 2.5) showed superior maximum prediction bias and RMSE
compared to the LSTM model ( short-term: 2.8 and 1.2; long-term; 19.5 and 5.5) and the CNN-LSTM model
(short-term; 2.0 and 0. 8 ; long-term: 11.2 and 3. 3). After incorporating lag days, the maximum prediction devi-
ation and RMSE for lags of 3 days (short-term: 0.7 and 0. 4; long-term: 5.5 and 1.9) and 5 days (short-term:
0.8 and 0. 3; long-term: 6.5 and 2. 0) in both short-term and long-term forecasts were smaller than lags of O days
(short-term; 1.5 and 0. 6; long-term: 8. 3 and 2. 5). The maximum prediction deviation and RMSE in the short —
term forecast were greater than lag O days for both lag 1 days (1.5 and 0. 8) and lag 7 days (1.9 and 0.9). In the
long-term forecast, the two indicators for lag 1 days (6.8 and 2.4) were lower than those for lag 0 days but higher
than those for lag 3 days and 5 days. The maximum prediction deviation for lag 7 days (7.5) was lower than that
for lag O days, but the RMSE (2.7) is higher than that for lag O days. Conclusion The established CNN-LSTM-
Attention model demonstrates significant predictive value for the onset of ischemic stroke and can provide reference
for the rational allocation of medical resources.

Key words ischemic stroke; meteorological factors; prediction model; convolutional neural networks; long short-
term memory networks; attention
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