

安徽医科大学学报

Acta Universitatis Medicinalis Anhui

ISSN 1000-1492,CN 34-1065/R

《安徽医科大学学报》网络首发论文

题目: S100A2 在结直肠癌进展中的作用机制研究 作者: 霍怡杉,段相冰,徐晓慧,李涛,马秀敏

网络首发日期: 2025-10-13

引用格式: 霍怡杉,段相冰,徐晓慧,李涛,马秀敏. S100A2 在结直肠癌进展中的作用

机制研究[J/OL]. 安徽医科大学学报.

https://link.cnki.net/urlid/34.1065.R.20251011.1651.006

网络首发:在编辑部工作流程中,稿件从录用到出版要经历录用定稿、排版定稿、整期汇编定稿等阶段。录用定稿指内容已经确定,且通过同行评议、主编终审同意刊用的稿件。排版定稿指录用定稿按照期刊特定版式(包括网络呈现版式)排版后的稿件,可暂不确定出版年、卷、期和页码。整期汇编定稿指出版年、卷、期、页码均已确定的印刷或数字出版的整期汇编稿件。录用定稿网络首发稿件内容必须符合《出版管理条例》和《期刊出版管理规定》的有关规定;学术研究成果具有创新性、科学性和先进性,符合编辑部对刊文的录用要求,不存在学术不端行为及其他侵权行为;稿件内容应基本符合国家有关书刊编辑、出版的技术标准,正确使用和统一规范语言文字、符号、数字、外文字母、法定计量单位及地图标注等。为确保录用定稿网络首发的严肃性,录用定稿一经发布,不得修改论文题目、作者、机构名称和学术内容,只可基于编辑规范进行少量文字的修改。

出版确认:纸质期刊编辑部通过与《中国学术期刊(光盘版)》电子杂志社有限公司签约,在《中国学术期刊(网络版)》出版传播平台上创办与纸质期刊内容一致的网络版,以单篇或整期出版形式,在印刷出版之前刊发论文的录用定稿、排版定稿、整期汇编定稿。因为《中国学术期刊(网络版)》是国家新闻出版广电总局批准的网络连续型出版物(ISSN 2096-4188,CN 11-6037/Z),所以签约期刊的网络版上网络首发论文视为正式出版。

S100A2 在结直肠癌进展中的作用机制研究

霍怡杉¹,段相冰¹,徐晓慧¹,李涛²,马秀敏¹

(¹新疆医科大学附属肿瘤医院医学检验中心,乌鲁木齐,830011;²新疆维吾尔自治区人民医院胃肠外科诊疗中心,乌鲁木齐,830011)

摘要 目的 探究钙结合蛋白 S100A2 在结直肠癌(CRC)进展中的作用及其与 CRC 细胞果 糖代谢的关系。 方法 通过肿瘤数据库 GEPIA2 网站分析 S100A2 在 CRC 患者和健康人群中 的表达差异。通过 Western blot 和 qRT-PCR 分析 S100A2 在 CRC 细胞系 HCT116、SW480、 Caco-2 以及人正常结肠上皮细胞系 NCM460 中的表达差异。通过免疫组织化学染色分析 S100A2 在 CRC 组织和癌旁组织中的表达差异。通过慢病毒转染的方法构建敲低 S100A2 的 HCT116 和 Caco-2 CRC 稳转细胞系及其阴性对照细胞系。通过 CCK-8 实验、伤口愈合实验 和 Transwell 实验检测 S100A2 的下调对 CRC 细胞增殖、迁移和侵袭能力的影响。通过 Western blot 和细胞免疫荧光染色检测 S100A2 的下调对 CRC 细胞内果糖转运蛋白 5 (GLUT5)、酮 己糖激酶(KHK)表达水平的影响。通过果糖检测试剂盒检测敲低 S100A2 后 CRC 细胞的 果糖浓度。利用敲低 S100A2 的结直肠癌 HCT116 细胞系构建裸鼠 CRC 荷瘤模型明确 S100A2 对 CRC 体内生长的影响,通过 Western blot 和免疫荧光检测成瘤小鼠的肿瘤组织中 GLU5、 KHK 的表达。结果 S100A2 在 CRC 患者中的表达水平显著高于健康人群。S100A2 在 3 种 CRC 细胞中的表达水平均显著高于正常结肠上皮细胞系。S100A2 敲低后, CRC 细胞的增殖、 迁移和侵袭能力受到抑制。S100A2 敲低后, CRC 细胞中果糖代谢相关蛋白 GLUT5 和 KHK 的表达水平下调,细胞对果糖的摄取量减少。小鼠体内实验显示 S100A2 的敲低抑制 CRC 肿瘤增殖及肿瘤组织中 GLUT5 和 KHK 表达水平。**结论** 下调 S100A2 表达通过影响 CRC 细胞果糖代谢抑制 CRC 进展。

关键词 S100A2; 结直肠癌; 果糖代谢; 葡萄糖转运蛋白 5; 酮己糖激酶中图分类号 R735.34

文献标志码 A

The role of S100A2 in the progression of colorectal cancer

Huo Yishan ¹, Duan Xiangbing ¹, Xu Xiaohui ¹, Li Tao ², Ma Xiumin ¹

(¹Medical Laboratory Center, Affiliated Cancer Hospital of Xinjiang Medical University,

Urumqi 830011; ²Gastrointestinal Surgery Center, People's Hospital of Xinjiang Uygur

Autonomous Region, Urumqi 830011)

Abstract Objective To investigate the role of calcium-binding protein S100A2 in colorectal cancer

(CRC) progression and its association with fructose metabolism in CRC cells. Methods Differential expression of S100A2 between CRC patients and healthy individuals was analyzed using the GEPIA2 tumor database. Western blot and qRT-PCR were performed to compare S100A2 expression levels in CRC cell lines (HCT116, SW480, Caco-2) and normal human colonic epithelial cells (NCM460). Immunohistochemical staining was conducted to assess S100A2 expression in CRC tissues and adjacent non-tumor tissues. S100A2-knockdown stable CRC cell lines and negative control cell lines were established via lentiviral transduction. Functional assays, including CCK-8, wound healing and Transwell experiments were utilized to evaluate the effects of S100A2 downregulation on CRC cell proliferation, migration, and invasion. Western blot and immunofluorescence staining were employed to analyze the impact of S100A2 knockdown on the expression levels of fructose transporter 5 (GLUT5) and ketohexokinase (KHK). Intracellular fructose concentration was measured using a fructose assay kit. A nude mouse CRC xenograft model was established using S100A2-knockdown HCT116 cell lines to investigate the role of S100A2 in tumor proliferation in vivo. Tumor tissues from the xenografted mice were analyzed by Western blot and immunofluorescence staining to evaluate the expression levels of GLUT5 and KHK. Results S100A2 expression was significantly elevated in CRC patients compared with healthy individuals. All three CRC cell lines exhibited markedly higher S100A2 expression than normal colonic epithelial cells. S100A2 knockdown significantly inhibited CRC cell proliferation, migration, and invasion capacities. Downregulation of S100A2 suppressed the expression of fructose metabolism-related proteins GLUT5 and KHK, accompanied by reduced cellular fructose uptake. In vivo experiments demonstrated that S100A2 knockdown effectively inhibited tumor growth and decreased GLUT5/KHK expression in xenograft tissues. Conclusion Downregulation of S100A2 inhibits CRC progression by modulating fructose metabolism in CRC cells.

Key words S100A2; colorectal cancer; fructose metabolism; facilitated glucose transporter member 5; ketohexokinase

Fund programs Tianchi Talent Project for Young Doctors in Xinjiang Uygur Autonomous Region (No. 2025TCYCHYS); Natural Science Foundation of Xinjiang Uygur Autonomous Region (No. 2021D01C185)

Corresponding author Ma Xiumin, E-mail: maxiumin1210@sohu.com

结直肠癌(colorectal cancer, CRC)是主要的恶性肿瘤之一,其发生和进展涉及一系列病理生理机制^[1]。钙结合蛋白 S100A2(S100 calcium-binding protein A2, S100A2)是 S100蛋白家族的重要成员,其在癌症中过表达,被认为主要起到促癌作用^[2]。例如,靶向 S100A2被证明可能是子宫内膜癌的一种治疗方法^[3]。此外,S100A2 的表达与脑源性肿瘤^[4]的不良预后及肝细胞癌^[5]的不良体内总生存期相关。S100A2 也被认为与胶质母细胞瘤肿瘤细胞体内增殖、凋亡、侵袭和迁移有关^[6]。

果糖是葡萄糖的一种可互换的单糖底物,它主要通过果糖转运蛋白 5(glucose transporter 5, GLUT5) 输入细胞,文献^[7]报道升高的 GLUT5 促进 CRC 进展。酮糖激酶 (ketohexokinase, KHK) 是果糖代谢中的第一个限速酶,研究^[7]表明 GLUT5-KHK 轴在介导 CRC 细胞的果糖驱动的糖酵解和三羧酸循环中发挥关键作用。然而,关于 S100A2 与 CRC 细胞果糖代谢的关系尚无深入研究。该研究通过在 CRC 细胞中下调 S100A2 的表达,初步探索了 CRC 中S100A2 与果糖代谢的关系。

1 材料与方法

1.1 细胞系、动物和病理组织切片

人 CRC 细胞系 HCT116、SW480、Caco-2 以及人正常结肠上皮细胞系 NCM460 均购自 美国 ATCC 公司。HCT116、SW480 以及 NCM460 细胞使用含 10%胎牛血清和 1%青-链霉素混合液的 RPMI1640 培养基培养,Caco-2 细胞使用含 20%胎牛血清、1%青-链霉素混合液和 1%非必需氨基酸的 DMEM 培养基培养。18 只 4 周龄雄性 BALB/C 裸鼠(体质量 16~18 g)购自北京斯贝福生物公司。所有小鼠在新疆医科大学附属肿瘤医院 SPF 级动物实验室内适应性饲养一周后,随机分为三组(对照组与两个敲低组),分组时三组间体质量无显著差异。正式实验开始时,小鼠年龄为 5 周龄,体质量约为 18-20 g。本研究动物实验方案获得新疆医科大学附属肿瘤医院动物保护和伦理委员会审批(批号: IACUC-20250305-44)。10 例 CRC 患者病理组织及其癌旁组织切片来自新疆医科大学附属肿瘤医院,样本的采集获得医院伦理委员会审批(批号: KY2021052635),患者均签署知情同意书。

1.2 生物信息学分析

在肿瘤数据库 GEPIA2 网站(http://gepia2.cancer-pku.cn/#index)中检索 S100A2 在 CRC 患者与健康人群中的表达情况,下载分析结果图。

1.3 CCK-8 实验

将转染后的细胞按 5×10^3 个/孔接种于 96 孔中,分别在培养的第 12、24、48、72 h 向每孔加入 $10~\mu$ L 的 CCK-8 试剂(上海碧云天公司) $^{[8]}$,继续避光孵育 2 h。然后,用酶标仪

于 450 nm 波长处读取各孔的吸光度(optical density, OD)。

1.4 Western blot 实验

对于细胞来源蛋白,首先收集细胞,用 RIPA 裂解液(上海碧云天公司)裂解细胞获得总蛋白。蛋白在金属浴中煮沸变性,经过 SDS-PAGE 凝胶电泳分离,再转移到 PVDF 膜(美国 Millipore 公司)上。常温下,用 5%脱脂牛奶封闭 PVDF 膜 2 h。膜与稀释好的一抗在 4 °C下孵育过夜。然后膜与二抗在常温下孵育 1 h。最后使用 ECL 化学发光液(美国赛默飞公司)进行显影。对于动物组织来源蛋白,首先将动物组织小心切取,加入裂解液,再放在冷冻研磨机上充分研磨,获得总蛋白之后蛋白处理步骤与细胞来源蛋白处理步骤相同。本研究所使用抗β-actin 抗体(1:5 000)、抗 S100A2 抗体(1:2 000)均购自美国 abcam 公司,抗 KHK抗体(1:2 000)、抗 GLUT5 抗体(1:2 000)均购自美国 Proteintech 公司。羊抗兔二抗(1:5 000)购自武汉赛维尔公司。

1.5 细胞划痕实验

将转染后的细胞接种于 6 孔板内, 待汇合度达 60%, 弃去培养基, 用无菌 10 μL 移液枪 头在细胞平面十字划痕, 制造"缺口"。然后以无血清培养基继续培养细胞, 分别于第 0 h 和 第 48 h 在显微镜下观察划痕"缺口"面积。

1.6 Transwell 侵袭实验

将转染后的细胞消化并离心,用无血清培养基进行重悬。然后,将细胞按 1×10³ 个/孔加入至铺好 Matrigel 胶的 24 孔 Transwell 板(美国康宁公司)上室内,下室加入 700 μL 含 10%胎牛血清的完全培养基。48 h 后撤去培养基,用 4%多聚甲醛固定细胞,0.1%结晶紫染色细胞,PBS 轻轻洗涤 3 次,在显微镜下观察并统计敲低 S100A2 的 HCT116 和 Caco-2 CRC 稳转细胞系发生侵袭的细胞数量。

1.7 qRT-PCR

根据制造商的说明,使用 TRIzol 试剂(南京 Vazyme 公司)提取细胞总 NRA。然后,使用 SuperScript IV试剂盒(美国赛默飞公司)对 RNA 进行逆转录反应,获得 cDNA。在 7500型 PCR 仪(美国 ABI 公司)上,使用 ChamQ SYBR qPCR Master Mix 试剂盒(南京 Vazyme 公司)对 cDNA 进行 qPCR,获得产物。使用 GAPDH 转录水平归一化处理各基因转录水平。各基因引物序列见表 1。

表 1 qRT-PCR 引物序列

Tab.1 Sequences of qRT-PCR Primers

Name	Primer sequences (5' - 3')
GAPDH	Forward: TGTGGGCATCAATGGATTTGG
GAPDH	Reverse: ACACCATGTATTCCGGGTCAAT
S100A2	Forward: CAGCGGATAGACGCACACAA
	Reverse: GCCACATCTTTGCTGACAAAC
GLUT5	Forward: GAGGCTGACGCTTGTGCTT
	Reverse: CCACGTTGTACCCATACTGGA
КНК	Forward: CTAAGGAGGACTCGGAGATAAGG
	Reverse: CATTGAGCCCATGAAGGCAC

1.8 免疫组织化学染色

使用石蜡包埋和福尔马林固定的 CRC 组织及癌旁组织样本进行免疫组化检测。样品用 4%多聚甲醛固定 20 min, 0.1% TritonX-100 通透 10 min, S100A2 抗体 4 ℃下孵育过夜, 二抗 37 ℃下孵育 2 h。阳性判定标准为:超过 50%的细胞显示明确的阳性染色。

1.9 慢病毒转染细胞

包含 S100A2 基因表达干扰质粒(shS100A2-#1、shS100A2-#2、shS100A2-#3)及阴性对照质粒(shS100A2-NC)的慢病毒载体购自上海吉玛基因公司。干扰质粒序列见表 2。按照制造商的说明,将慢病毒与培养基混合,加入至 HCT116 细胞和 Caco-2 细胞培养体系。经过 0.01 mg/L 嘌呤霉素(上海碧云天公司)筛选获得转染成功的细胞株。

表 2 S100A2 基因表达干扰质粒序列

Tab.2 Sequences of S100A2 gene expression interference plasmid

Name	Primer sequences (5' - 3')
shS100A2-#1	CCGGCAAGTTCTGGAGGAGATGAAACTCGAGTTTCATCTCCTCC
	AGAACTTGTTTTT
shS100A2-#2	CCCGGCAG-ACAAGTTCTGGAGGAGATCTCGAGATCTCCTCCAG
	AACTTGTCTGTTTT

CCGGACCACTGTTCTCTGTTAAGAACTCGAG-TTCTTAACAGAAC

shS100A2-#3

AGTGTCTTTTT

1.10 免疫荧光染色

将细胞接种在培养皿中并培养 36 h。使用 4%多聚甲醛固定细胞 20 min, PBS 冲洗 3 次,并用含有 0.1% Triton-X 100 的 PBS 溶液在室温下通透细胞 15 min, PBS 冲洗 3 次。将细胞与山羊血清在 37 ℃下避光孵育 30 min。滴加 GLUT5 一抗,并将细胞放在湿盒中 4 ℃下孵育过夜。去除一抗后,将细胞在 PBS 中漂洗 3 次。滴加荧光二抗,并将细胞在 37 ℃下孵育 1.5 h。细胞与 KHK 一抗孵育的步骤与前文 GLUT5 一抗孵育相同。然后,细胞用 PBS 洗涤 3 次。将 DAPI 染色液(武汉赛维尔公司)加入细胞中,孵育 5 min。最后,将细胞用 PBS 冲洗 3 次,并用抗荧光猝灭剂(美国赛默飞公司)进行封闭,在共聚焦荧光显微镜(德国蔡司公司)下拍摄细胞。对于动物组织切片进行的免疫荧光染色,按上述操作将切片与抗体进行孵育后,在共聚焦荧光显微镜下观察拍照。

1.11 裸鼠荷瘤模型构建

18 只 4 周龄 BALB/C 雄性裸鼠饲养在医院洁净动物房内,适应性饲喂 1 周。将转染后的 HCT116 细胞按 1×10⁶ 个/只接种于裸鼠背部皮下,根据接种细胞转染质粒的不同将裸鼠分为: sh-#2-nude 组、sh-#3-nude 组和 sh-NC-nude 组,每组各 6 只。接种第 5 天,所有裸鼠背部皮下均观察到有明显凸起组织形成,表明荷瘤模型构建成功。接种 3 周后,处死动物并完整取下肿瘤,冻存于-80 ℃冰箱中备用。

1.12 果糖含量检测

根据制造商的说明,使用含相同浓度果糖(5 mmol/L)不含葡萄糖的培养体系培养细胞,在培养的第0h和第48h使用果糖含量检测试剂盒(北京索莱宝公司)定量检测细胞培养体系上清液中果糖浓度。

1.13 统计学处理

所有实验重复 3 次,数据以 $\bar{x}\pm s$ 表示,使用 SPSS 22.0 软件分析,通过 Graphpad Prism 8.0 软件绘制统计图形。通过 t 检验分析两组数据,One-way ANOVA 比较多组数据。P<0.05 为差异有统计学意义。

2 结果

2.1 S100A2 在 CRC 中高表达

通过检索 GEPIA2 数据库,获得 S100A2 在 CRC 患者和健康人群中的表达情况,S100A2

在 CRC 患者中表达水平高于健康人群(P<0.05)(图 1A)。对 10 例 CRC 患者病理组织和 癌旁组织切片进行免疫组化,结果表明 S100A2 在 CRC 组织中高表达(图 1B)。提取 CRC 细胞系和 NCM460 细胞 RNA 和蛋白,分别进行 qRT-PCR 和 Western blot 分析(图 1C、D),显示 S100A2 基因在 CRC 细胞中的转录和翻译表达水平均上调(P<0.01)。

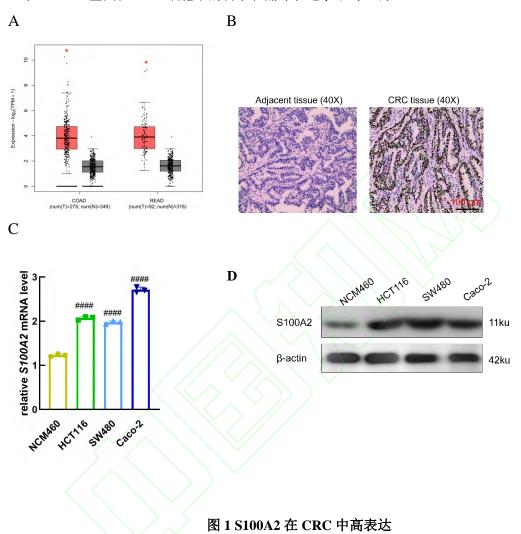



Fig. 1 S100A2 was highly expressed in CRC

A: The GEPIA2 database was used to analyze the difference in S100A2 expression between CRC patients and healthy people; COAD: Colon cancer; READ: rectal cancer; Red: patient; Black: healthy people; B: Immunohistochemical staining was used to analyze the difference of S100A2 expression in CRC tissues and corresponding paracancer tissues; C, D: The transcripts and protein levels of S100A2 in three CRC cell lines (HCT116, SW480, Caco-2) and normal colon epithelial cell line NCM460 were analyzed by qRT-PCR and Western blot; *P <0.05 vs healthy people; $^{\#\#\#}P$ <0.000 1 vs NCM460 cells.

2.2 S100A2 敲低抑制了 CRC 细胞增殖、迁移和侵袭活性 为了探究 S100A2 的表达对 CRC

进展的作用,本研究构建了稳定敲低 S100A2 的 HCT116 和 Caco-2 细胞株及其阴性对照细胞株(图 2A)。CCK-8 实验结果表明,S100A2 敲低后,HCT116 和 Caco-2 细胞增殖活性受到抑制(图 2B)。细胞划痕实验和 Transwell 实验结果显示(图 2C、D),在 HCT116 细胞和 Caco-2 细胞中,sh 组的迁移和侵袭能力弱于 shNC 组(P<0.001)。

D

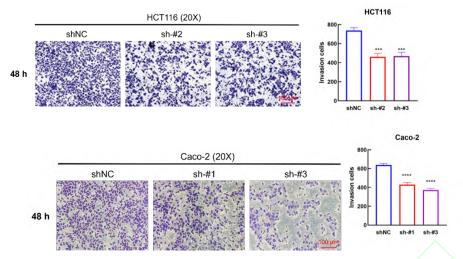
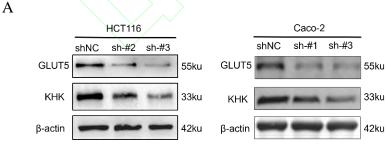



图 2 S100A2 敲低抑制了 CRC 细胞增殖、迁移和侵袭活性

Fig. 2 S100A2 knockdown inhibited the proliferation, migration and invasion of CRC cells

A: Western blot verified the low efficiency of S100A2 expression in HCT116 cells and Caco-2 cells; B: Cell proliferation activity was detected by CCK-8 proliferation assay; C: Wound healing test was used to detect cell migration ability; D: Transwell assay was used to detect cell invasion ability; Scale bar: $100 \mu m$; ***P < 0.001, **** $P < 0.0001 \nu s$ shNC.

2.3 S100A2 敲低抑制 CRC 细胞果糖代谢 与 shNC 组相比,HCT116 和 Caco-2 细胞中 sh 组 的果糖代谢相关蛋白 GLUT5 和 KHK 表达水平显著降低(图 3A)。细胞免疫荧光分析得到了相同的结果(图 3B)。S100A2 敲低可能抑制了 CRC 细胞果糖代谢。随后,对两组细胞进行相同初始浓度果糖培养,并检测培养 48 h 后上清中果糖浓度。如图 3C 结果显示,与 shNC 组相比,HCT116 细胞(P=0.0008)和 Caco-2 细胞(P=0.0004)中 sh 组的细胞对果糖的摄取量减少。

В

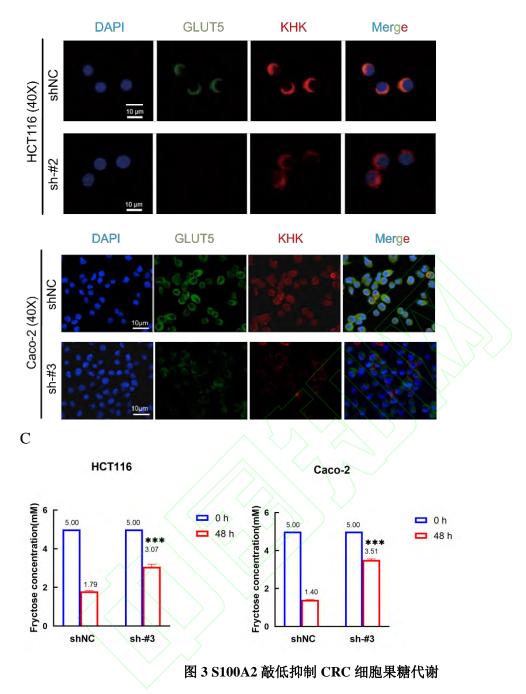


Fig. 3 S100A2 knockdown inhibited fructose metabolism in CRC cells

A: The expression levels of GLUT5 and KHK, which are related to fructose metabolism, were detected by Western blot; B: The expression of GLUT5 and KHK in each group was detected by cellular immunofluorescence; C: The concentration of fructose in the supernatant of fructose-cultured cells at 0 h and 48 h was determined; *** $P < 0.001 \ vs$ shNC.

2.4 S100A2 敲低抑制 CRC 肿瘤体内生长和果糖代谢 通过接种肿瘤细胞的方法构建裸鼠 CRC 荷瘤模型。建模 3 周后完整取下裸鼠肿瘤,测量肿瘤重量,显示 sh-#2-nude 组和 sh-#3-nude 组裸鼠肿瘤的重量均低于 shNC-nude 组(*P*<0.05)(图 4A、B)。从 sh-#2-nude 组

和 shNC-nude 组裸鼠肿瘤组织中提取蛋白,进行 Western blot 实验。结果显示,GLUT5 和 KHK 在 sh-#2-nude 组肿瘤中的表达水平低于 shNC-nude 组(图 4C)。对裸鼠肿瘤组织切片进行免疫荧光染色,显示 GLUT5 和 KHK 在 sh-#2-nude 组的荧光染色强度弱于 shNC-nude 组,验证了体外实验的结果(图 4D)。

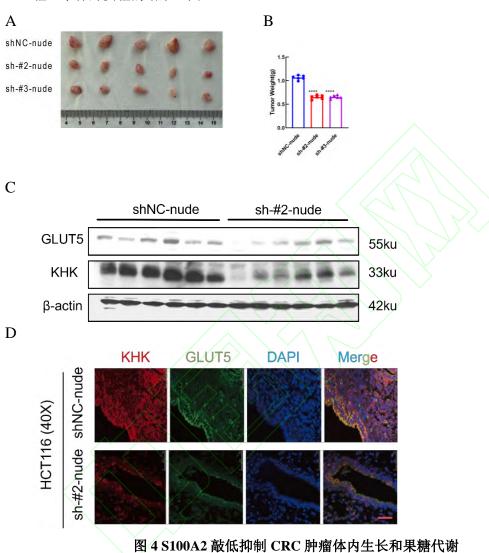


Fig. 4 S100A2 knockdown inhibited CRC tumor growth and fructose metabolism in vivo

A: The subcutaneous CRC tumor was removed from the back of nude mice three weeks after the inoculation of tumor cells, then weighed and photographed; B: The weight change of the tumor; C: Western blot was performed on CRC tumor tissues of nude mice to analyze the expression of GLUT5 and KHK; D: The expression of GLUT5 and KHK in CRC tumor tissues of nude mice in control group and S100A2 knockdown group were analyzed by immunohistochemistry; **** $P < 0.000 \ 1 \ vs$ shNC-nude.

3 讨论

CRC 是最主要的恶性肿瘤之一,在世界范围内有着较高的发病率和病死率。近年来,随着对肿瘤代谢重编程的深入研究,代谢异常在肿瘤发生发展中的关键作用逐渐受到关注 ^[9]。果糖代谢作为细胞能量代谢的重要途径之一,在肿瘤细胞的增殖、侵袭和转移等过程中发挥着重要作用^[10]。本研究聚焦于探讨 S100A2 在结直肠癌中的表达调控以及与果糖代谢通量的关系,旨在揭示 S100A2 在 CRC 进展中的潜在分子机制。

代谢异常是肿瘤细胞的标志之一。实体肿瘤细胞往往处于缺氧环境,强大的能量需求迫使肿瘤细胞过度摄取环境中的能源物质并增强多种能量代谢途径。肿瘤细胞通过主动调节各种代谢途径通量,以满足增加的生物能量和生物合成需求,并减轻癌细胞增殖和存活所产生的氧化应激^[11]。果糖代谢与肿瘤的发生和发展紧密相关。增加膳食中果糖的摄入量会导致肥胖和代谢综合征的风险增加,肥胖是导致多种癌症发生的重要风险因素。有临床和实验证据^[12]表明,增加果糖摄入量会促进肿瘤进展。然而,果糖代谢促进肿瘤进展以及肿瘤细胞如何调控果糖代谢的确切机制仍未完全了解。果糖代谢在 CRC 肝转移过程中发挥了重要作用,转移性 CRC 细胞可以在新的微环境中重新编程果糖代谢,尤其是在肝脏等代谢活跃的器官中,以利于肿瘤细胞定植。此外,临床研究^[13]表明,总果糖摄入量的增加与近端 CRC 发病率和病死率增加有关,并且容易诱发女性早发性 CRC。

GLUT5 是特异性转运果糖的膜蛋白,其对果糖的亲和力远高于葡萄糖。研究^[14]表明,GLUT5 的过度表达可以促进肿瘤细胞果糖代谢通量,增加细胞能量来源,以促进肿瘤进展。在 CRC 中,GLUT5 显示出高水平表达,GLUT5-KHK 轴介导的果糖代谢能够增强 CRC 细胞增殖和化疗耐药性,使用 GLUT5 抑制剂能够抑制 CRC 细胞增殖活性^[15]。也有研究^[16]报道,GLUT5 介导的果糖代谢驱动肿瘤细胞增殖可以不依赖 KHK 的表达,这提示 GLUT5 对肿瘤果糖代谢的促进作用可能涉及多种方式。

有研究^[17]表明,S100A2 对 CRC 具有预后价值,且与 CRC 肿瘤组织中的免疫浸润具有相关性。更具体地说,S100A2 过度表达可以作为 II 期和III 期 CRC 患者的预后标志物。S100A2 作为钙结合蛋白,可能通过调节细胞内钙离子水平进而影响某些基因的转录、翻译过程,这 其中可能就涉及了 GLUT5 基因或者其他参与 GLUT5 基因表达的相关基因。最近的一项研究^[18]结果可以支持本研究的结论,S100A2 可以通过调节葡萄糖转运蛋白 GLUT1 的表达增加 CRC 细胞糖酵解通量,进而促进肿瘤进展。本研究结果表明,S100A2 可以通过调控 GLUT5/KHK 轴调节 CRC 细胞果糖代谢通量,促进肿瘤进展。然而,有关 S100A2 如何影响 GLUT5 的表达,还需要进一步探讨。综上所述,本实验结果为 S100A2 与 CRC 细胞果糖代谢之间的联系提供了一定依据,并且这是首次报道二者之间存在的功能联系,将为临床

参考文献

- [1] Barresi V. Colorectal cancer: from pathophysiology to novel therapeutic approaches[J]. Biomedicines, 2021, 9(12): 1858. doi:10.3390/biomedicines9121858.
- [2] Sugino H, Sawada Y. Influence of S100A2 in human diseases[J]. Diagnostics, 2022, 12(7): 1756. doi:10.3390/diagnostics12071756.
- [3] Li C, Zhu D, Cao X, et al. Knockdown of S100A2 inhibits the aggressiveness of endometrial cancer by activating STING pathway[J]. J Obstet Gynaecol, 2024, 44(1): 2361849. doi:10.1080/01443615.2024.2361849.
- [4] Zhang Y, Yang X, Zhu X L, et al. S100A gene family: immune-related prognostic biomarkers and therapeutic targets for low-grade glioma[J]. Aging, 2021, 13(11): 15459-78. doi:10.18632/aging.203103.
- [5] Yan J, Huang Y J, Huang Q Y, et al. Transcriptional activation of S100A2 expression by HIF-1 a via binding to the hypomethylated hypoxia response elements in HCC cells[J]. Mol Carcinog, 2022, 61(5): 494-507. doi:10.1002/mc.23393.
- [6] Yin A, Shang Z, Etcheverry A, et al. Integrative analysis identifies an immune-relevant epigenetic signature for prognostication of non-G-CIMP glioblastomas[J]. OncoImmunology, 2021, 10(1): 1902071. doi:10.1080/2162402X.2021.1902071.
- [7] Shen Z, Liu Y, et al. GLUT5-KHK axis-mediated fructose metabolism drives proliferation and chemotherapy resistance of colorectal cancer[J]. Cancer Lett, 2022, 534: 215617. doi:10.1016/j.canlet.2022.215617.
- [8] 冯叶雯, 安庆文, 杨楚琪, 等. 基于 PTEN/PI3K/AKT 信号通路探讨隐丹参酮抑制结直肠癌的作用机制[J]. 中华中医药杂志, 2024, 39(12): 6666-70. doi:10.1016/j.cmet.2024.10.002.
- [8] Feng Y W, An Q W, Yang C Q, et al. Discussion on the mechanism of cryptotanshinone inhibiting colorectal cancer based on PTEN/PI3K/AKT signaling pathway[J]. China J Tradit Chin Med Pharm, 2024, 39(12): 6666-70. doi:10.1016/j.cmet.2024.10.002.
- [9] 傅 饶, 孙倍成. 巨胞饮在肿瘤微环境中的研究进展[J]. 安徽医科大学学报, 2024, 59(8): 1310-4. doi:10.19405/j.cnki.issn1000-1492.2024.08.004.
- [9] Fu R, Sun B C. Research progress of macrosomia in tumor microenvironment[J]. Acta Univ Med Anhui, 2024, 59(8): 1310-4. doi:10.19405/j.cnki.issn1000-1492.2024.08.004.

- [10] Yan H, Wang Z, Teng D, et al. Hexokinase 2 senses fructose in tumor-associated macrophages to promote colorectal cancer growth[J]. Cell Metab, 2024, 36(11): 2449-67.e6. doi:10.1016/j.cmet.2024.10.002.
- [11] Martínez-Reyes I, Chandel N S. Cancer metabolism: looking forward[J]. Nat Rev Cancer, 2021, 21(10): 669-80. doi:10.1038/s41568-021-00378-6.
- [12] Ting K K Y. Fructose-induced metabolic reprogramming of cancer cells[J]. Front Immunol, 2024, 15: 1375461. doi:10.3389/fimmu.2024.1375461.
- [13] Yuan C, Joh H K, Wang Q L, et al. Sugar-sweetened beverage and sugar consumption and colorectal cancer incidence and mortality according to anatomic subsite[J]. Am J Clin Nutr, 2022, 115(6): 1481-9. doi:10.1093/ajcn/nqac040.
- [14] Huang X, Fang J, Lai W, et al. IL-6/STAT3 axis activates Glut5 to regulate fructose metabolism and tumorigenesis[J]. Int J Biol Sci, 2022, 18(9): 3668-75. doi:10.7150/ijbs.68990.
- [15] Włodarczyk J, Włodarczyk M, Zielińska M, et al. Blockade of fructose transporter protein GLUT5 inhibits proliferation of colon cancer cells: proof of concept for a new class of anti-tumor therapeutics[J]. Pharmacol Rep, 2021, 73(3): 939-45. doi:10.1007/s43440-021-00281-9.
- [16] Liang R J, Taylor S, Nahiyaan N, et al. GLUT5 (SLC2A5) enables fructose-mediated proliferation independent of ketohexokinase[J]. Cancer Metab, 2021, 9(1): 12. doi:10.1186/s40170-021-00246-9.
- [17] Hatthakarnkul P, Ammar A, Pennel K A F, et al. Protein expression of S100A2 reveals it association with patient prognosis and immune infiltration profile in colorectal cancer[J]. J Cancer, 2023, 14(10): 1837-47. doi:10.7150/jca.83910.
- [18] Li C, Chen Q, Zhou Y, et al. S100A2 promotes glycolysis and proliferation *via* GLUT1 regulation in colorectal cancer[J]. FASEB J, 2020, 34(10): 13333-44. doi:10.1096/fj.202000555R.