深度学习重建在主动脉 CTA 虚拟平扫中的研究

张天语,赵小英,宋 建,沈 艺,吴兴旺 (安徽医科大学第一附属医院放射科,合肥 230022)

摘要 目的 研究低剂量条件下能谱 CT 虚拟平扫(VUE)联合深度学习重建(DLIR)算法在主动脉 CT 血管成像(CTA)中的 应用价值。方法 前瞻性收集 94 例行主动脉 CTA 检查的患者,随机分为低剂量能谱增强组和 100 kVp 常规增强组,每组 47 例。两组均采用常规扫描模式先行主动脉常规平扫(TUE),管电压 120 kVp,使用自适应统计迭代重建(ASIR-V)40% 重建 TUE 图像;低剂量能谱增强组采用宝石能谱成像(GSI)扫描模式行增强扫描,DLIR-H 重建得 60 keV 虚拟单能量图像(VMIs) 和 VUE 图像;100 kVp 常规增强组行常规增强扫描,管电压 100 kVp,ASIR-V 50% 重建增强图像。在每组图像上测量和计算升 主动脉、降主动脉、腹主动脉、髂总动脉、腰大肌的 CT 值、噪声(SD)值、噪声比(SNR)和对比噪声比(CNR),并记录有效辐射 剂量(ED)。由 2 名医师采用 5 分法对图像质量进行主观评分。结果 相对于 100 kVp 常规增强图像,低剂量能谱增强图像 的升主动脉、降主动脉、酸总动脉、腰大肌 SNR 值及 CNR 值更大(P<0.05),两者主观评价差异无统计学意义;与 TUE 图像比较,VUE 图像的腹主动脉、髂总动脉、腰大肌 SNR 值及升主动脉 CNR 值较大(P<0.05),主观图像质量相近;低剂量能谱增强扫描 ED 值较 100 kVp 常规增强扫描降低约40.0%。结论 低剂量能谱 CT 联合 DLIR 应用于主动脉 CTA,可以显著提高 SNR 及 CNR 值,同时生成的 VUE 图像质量接近 TUE 扫描,具有进一步降低辐射剂量的潜力。 关键词 主动脉 CT 血管造影;深度学习图像重建;能谱 CT;虚拟平扫;低辐射剂量;图像质量

中图分类号 R 816.2

文献标志码 A 文章编号 1000 - 1492(2025)04 - 0735 - 06 doi:10.19405/j.cnki.issn1000 - 1492.2025.04.022

CT 血管成像(computed tomography angiography, CTA)是主动脉成像的常规检查方式,在临床 实践中常用于急性主动脉综合征(acute aortic syndrome, AAS)的检出与复诊,其中包括主动脉夹层、 壁间血肿及动脉瘤等常见疾病^[1-2],而 CTA 产生的

2024 - 12 - 23 接收 基金项目:安徽省自然科学基金项目(编号:2308085MH241) 作者简介:张天语,女,硕士研究生; 吴兴旺,男,教授,主任医师,博士生导师,通信作者,Email: duobi2004@126.com 辐射危害及造影剂对肾功能不全患者构成的风险也 是临床关注的问题^[3]。降低辐射剂量的方式有降 低管电压、电流等,但同时会造成图像质量的降低, 影响临床诊断。重建算法可以起到改善图像质量的 效果,目前临床常用的 CT 图像重建算法为自适应 统计迭代重建(adaptive statistical iterative reconstruction-V, ASIR-V)。随着人工智能的发展及超级计 算机技术的使用,深度学习重建(deep-learning image reconstruction, DLIR)成为了最新的重建算法, 凭借其高图像质量和低辐射剂量的特点得到了广泛

188. 37) pg/ml were higher than those in the control group(237. 54 ± 137. 20) pg/ml, and the differences between the groups were statistically significant (P = 0.005). Meanwhile, there was no statistically significant difference between the antibody-positive and antibody-negative groups. Multi-factor Logistic regression analysis showed that UGRP1 was the risk factor for the occurrence of primary hypothyroidism(OR = 1.004,95% CI:1.001 - 1.007, P =0.007). The difference between the control group and UGRP1 group in T4 concentration secreted by human thyroid normal cells was not statistically significant. **Conclusion** Serum UGRP1 levels increase in patients with primary hypothyroidism, and the high expression of UGRP1 may have no direct relation to the function of thyroid cells secreting T4.

Key words uteroglobulin-related protein 1; primary hypothyroidism; hashimoto thyroiditis; thyroid peroxidase antibody; anti-thyroglobulin antibody; plasmid transfection

Fund program National Natural Science Foundation of China (No. 81270864)

Corresponding author Zuo Chunlin, E-mail: zuochl@163.com

关注^[4-6]。该研究希望通过比较低剂量能谱扫描与 虚拟平扫(virtual un-enhanced, VUE)联合 DLIR 算 法对主动脉图像质量以及辐射剂量的影响,探讨低 剂量能谱 CT 虚拟平扫的临床应用价值。

1 材料与方法

1.1 病例资料 前瞻性收集 2023 年 8 月—2024 年 3 月在安徽医科大学第一附属医院进行主动脉 CTA 检查的 94 例患者,按照 1 : 1 将患者随机分为 低剂量能谱增强组和 100 kVp 常规增强组。低剂量 能谱增强组:男 31 例,女 16 例,年龄 33 ~ 86(60.7 ±15.0)岁,平均体质指数(body mass index, BMI)(24.6±4.3) kg/m²;100 kVp 常规增强组:男 35 例, 女 12 例,年龄 30 ~ 90(60.1±15.0)岁,BMI(24.3± 3.9) kg/m²。纳入标准:① 临床拟诊为 AAS 的患 者;② 在该院顺利进行主动脉 CTA 者,符合诊断并 可完成测量的病例;③ 年龄≥18 岁。排除标准:① 碘对比剂过敏患者;② 严重肝肾功能不全患者;③ 金属支架植入影响诊断和测量的病例。

1.2 仪器与方法 使用 256 排螺旋 CT(revolution apex CT, GE healthcare),扫描范围为胸腔入口至骨 盆底部,患者采取仰卧位,双手举过头顶,扫描方向 由头侧向足侧,使用双筒高压注射器,以4 ml/s 流 速经右侧肘正中静脉团注对比剂碘佛醇(碘浓度: 350 mg/mL),剂量为 1.5 mL/kg,以相同流速追加 40 ml 生理盐水,采用 SmartPrep 对比剂跟踪技术智能 触发扫描。

两组患者先进行常规平扫(true un-enhanced, TUE),扫描参数:管电压 120 kVp,采用 100~450 mA 智能管电流,噪声指数 8.0,螺距 1.375:1,旋转 速度 91.67 mm/s,使用 ASIR-V 40% 算法重建。

随后低剂量能谱增强组使用宝石能谱成像 (gemstone spectral imaging, GSI)扫描模式,80/140 kVp 管电压瞬时切换,采用 145 mA GSI Assist 管电 流,噪声指数 14.0,螺距 1.531:1,旋转速度 245.00 mm/s,使用 DLIR-H 算法重建得到 60 keV 虚拟单能 量图像(virtual monoenergetic images, VMIs)及 VUE 图像。

100 kVp 常规增强组使用常规增强扫描模式, 管电压 100 kVp,采用 200~500 mA 智能管电流,噪 声指数 10.0,螺距 0.984:1,旋转速度 65.63 mm/s, 使用 ASIR-V 50% 算法重建。

以上各组扫描层厚、层距及重建层厚、层距均为 5.0 mm,将重建数据传输至 GE AW 4.7 后处理工作

站进行测量分析。

1.3 图像质量客观评价 分别在升主动脉、降主动 脉、腹主动脉、髂总动脉、腰大肌及脐水平腹壁脂肪 放置椭圆形感兴趣区(region of interest, ROI),避开 粥样硬化斑块、金属支架伪影及病变区域,根据不同 部位选择合适的 ROI 大小,其中升主动脉、降主动 脉、腹主动脉及髂总动脉部位 ROI 直径为管腔直径 的50%, 腰大肌及腹壁脂肪部位 ROI 面积为100 mm²。收集 ROI 内平均 CT 值及 SD 值,将 SD 值作 为噪声值,每个部位 ROI 分别测量 3 次取平均值, 计算升主动脉、降主动脉、腹主动脉、髂总动脉、腰大 肌的噪声比(signal to noise ratio, SNR)以及升主动 脉、降主动脉、腹主动脉、髂总动脉的对比噪声比 (contrast to noise ratio, CNR),将腹壁脂肪 SD 值作 为背景噪声, SNR = 感兴趣区域 CT 值/相同区域 SD 值, CNR = | 感兴趣区域 CT 值 - 腰大肌 CT 值 | / 腹壁脂肪 SD 值。

1.4 图像质量主观评价 设置1~5评分数值,1 分代表图像伪影及噪声极严重,图像质量极差,无法 进行临床诊断;2分代表图像伪影及噪声较重,图像 质量不佳,无法实现临床诊断;3分代表图像伪影及 噪声尚可接受,图像质量一般,基本可以进行临床诊 断;4分代表图像伪影及噪声较小,图像质量良好, 可以进行临床诊断;5分代表基本未出现图像伪影, 噪声小,图像质量优秀,可以进行临床诊断。由2位 年资10年以上的副主任医师进行主观评分,若评分 不统一则通过讨论决定最终评分。

1.5 统计学处理 使用 SPSS 23.0 对各组数据进行正态性检验,数据呈偏态分布,因此,采用 Mann-Whitney U 检验分别比较低剂量 60 keV VMIs 与 100 kVp 常规增强、VUE 与 TUE 之间的客观评价及主观评价,采用 Kappa 检验评价 2 名医师主观评分的一致性,Kappa 值大于 0.75 为一致性较好,0.40 ~ 0.75 为一致性一般,小于 0.40 为一致性较差。P < 0.05 认为差异有统计学意义。

2 结果

2.1 辐射剂量 记录容积 CT 剂量指数(volume CT dose index, CTDIvol)及剂量长度乘积(dose length product, DLP),通过公式计算有效辐射剂量(effective dose, ED), ED = DLP × K,由于主动脉 CTA 同时涉及胸部及腹部扫描范围,故选择数值较高的腹部扫描 K = 0.015 mSv/(mGy · cm)。

如表1所示,低剂量能谱增强扫描 ED 值低于

100 kVp 常规增强扫描,采用 Mann-Whitney U 检验 比较各组 ED 值,低剂量能谱增强扫描相对于 100 kVp 常规增强扫描 ED 值减少约 40.0%, Z = -7.717,差异有统计学意义(P < 0.001)。

2.2 客观评价 如表 2 所示, DLIR-H 算法重建的 低剂量 60 keV VMIs 升主动脉、降主动脉、腹主动脉 和髂总动脉 SNR 值及 CNR 值大于 ASIR-V 50% 算

法重建的 100 kVp 常规增强扫描,差异有统计学意义(P<0.05)。

如表 3 所示, DLIR-H 算法重建的 VUE 腹主动脉、髂总动脉、腰大肌 SNR 值及升主动脉 CNR 值大 于 ASIR-V 40% 算法重建的 TUE,差异有统计学意 义(P < 0.05); VUE 降主动脉 SNR 值及 CNR 值大 于 TUE,差异无统计学意义。

Tab. 1 Comparison of the radiation dose between the two groups $(\bar{x} \pm s)$				
Radiation dose	Group 1	Group 2	Z value	P value
TUE			LKAL	$\langle \rangle \rangle \rangle$
CTDIvol (mGy)	11.8 ± 1.4	11.6 ± 1.4	-0.760	0.447
DLP (mGy · cm)	868.0 ± 123.9	853.1 ±119.0	-0.726	0.468
ED (mSv)	13.0 ± 1.9	12.8 ± 1.8	-0.726	0.468
Enhancement				
CTDIvol (mGy)	3.2 ± 0.7	5.8 ±0.7	-8.422	< 0.001
DLP (mGy · cm)	257.0 ± 60.1	428.0 ± 70.7	-7.717	< 0.001
ED (mSv)	3.9 ± 0.9	6.4 ± 1.1	-7,717	< 0.001
Total dose				
CTDIvol (mGy)	14.9 ± 1.9	17.4 ± 1.7	- 5.252	< 0.001
DLP (mGy · cm)	$1\ 125.0 \pm 175.1$	$1\ 281.2 \pm 171.5$	-4.027	< 0.001
FD(mSr)	16.0 ± 2.6	10 2 + 2 6	4 027	< 0.001

表1 两组患者辐射剂量比较(x±s)

Group 1 : The low-dose energy spectrum group; Group 2 : The s	standard 100 kVp enhancement grou	p.
---	-----------------------------------	----

表 2	低剂量 60]	keV VMIs	和 100 kV	o 常规增强图像	$(\mathbf{x} \pm s)$
-----	----------	----------	----------	----------	----------------------

Tab. 2 Comparison of objective image evaluation between low-dose 60 keV VMIs and 100 kVp standard enhancement $(\bar{x} \pm s)$

Parameter	60 keV VMIs	Standard enhancement	Z value	P value
CT value				
Ascending aorta	503.4 ± 144.5	384.0 ± 103.3	-4.019	< 0.001
Descending aorta	535.1 ± 150.3	388.1 ±93.7	-4.764	< 0.001
Abdominal aorta	542.8 ± 142.9	381.5 ± 100.7	-5.426	< 0.001
Common iliac artery	530.4 ± 136.6	384.2 ± 105.6	-5.002	< 0.001
Psoas major muscle	58.1 ± 5.9	54.1 ± 5.4	-3.361	0.001
SD value				
Ascending aorta	9.5 ± 1.6	11.1 ± 1.9	-4.133	< 0.001
Descending aorta	9.6 ± 1.7	11.5 ± 2.0	-4.617	< 0.001
Abdominal aorta	11.8 ± 1.5	13.2 ± 1.9	-3.558	< 0.001
Common iliac artery	10.5 ± 1.3	10.5 ± 1.7	-0.189	0.850
Psoas major muscle	9.4 ± 1.2	10.0 ± 1.2	-2.072	0.038
Subcutaneous fat	7.2 ± 1.3	8.9 ±1.1	-6.413	< 0.001
SNR value				
Ascending aorta	53.3 ± 14.3	34.8 ±9.1	-5.932	< 0.001
Descending aorta	56.8 ± 17.3	34.1 ± 8.4	-6.628	< 0.001
Abdominal aorta	46.2 ± 12.3	29.3 ± 8.9	-6.552	< 0.001
Common iliac artery	51.1 ± 14.0	37.0 ± 9.9	-4.949	< 0.001
Psoas major muscle	6.3 ± 1.1	5.5 ± 0.8	-3.550	< 0.001
CNR value				
Ascending aorta	63.1 ± 21.4	38.0 ± 15.0	-5.411	< 0.001
Descending aorta	67.4 ± 21.9	38.3 ± 13.8	-6.152	< 0.001
Abdominal aorta	68.4 ± 20.6	37.7 ± 14.6	-6.552	< 0.001
Common iliac artery	66.6 ± 19.6	38.0 ± 15.1	-6.318	< 0.001

3	VUE 和 TUE	と客观评价比较(x ± s)	
---	-----------	----------------	--

	•		8	
Parameter	VUE	TUE	Z value	P value
CT value				
Ascending aorta	36.1 ± 9.0	42.6 ± 6.0	-3.651	< 0.001
Descending aorta	35.1 ± 8.6	42.3 ± 5.5	-3.788	< 0.001
Abdominal aorta	34.0 ± 8.1	41.9 ± 4.3	-5.000	< 0.001
Common iliac artery	35.7 ± 9.9	41.0 ± 4.0	- 2.995	0.003
Psoas major muscle	44.9 ± 3.8	52.2 ± 3.8	- 5.968	< 0.001
SD value				
Ascending aorta	5.5 ± 1.1	6.2 ± 1.0	- 3.808	< 0. 001
Descending aorta	5.3 ± 0.8	7.0 ± 1.1	-5.868	< 0. 001
Abdominal aorta	5.8 ± 0.9	9.0 ± 1.6	- 5.958	< 0. 001
Common iliac artery	5.5 ± 0.9	7.4 ± 1.4	-5.418	< 0. 001
Psoas major muscle	5.6 ± 0.8	8.9 ± 1.4	- 5.947	< 0. 001
Subcutaneous fat	6.4 ± 1.2	7.7±1.2	- 5.027	< 0. 001
SNR value				
Ascending aorta	6.9 ± 2.4	7.1±1.4	- 0. 899	0.368
Descending aorta	6.9 ± 2.1	6.2 ± 1.4	- 1.958	0.050
Abdominal aorta	5.9 ± 1.5	4.8 ± 0.9	-4.519	< 0.001
Common iliac artery	6.6 ± 2.1	5.7±1.1	- 2.603	0.009
Psoas major muscle	8.1 ± 1.6	6.1 ± 1.2	- 5. 598	< 0.001
CNR value				
Ascending aorta	2.0 ± 1.1	1.4 ± 0.8	-3.460	0.001
Descending aorta	1.7±1.1	1.4 ± 0.7	- 1.459	0.145
Abdominal aorta	1.8±1.2	1.4 ± 0.6	-1.947	0.052
Common iliac artery	1.7 ± 1.3	1.5 ± 0.6	-0.563	0.575

Tab. 3 Comparison of the objective evaluation between the VUE and TUE images $(\bar{x} \pm s)$

耒

2.3 主观评价 2名医师主观评价一致性较好, Kappa 值为 0.806~0.885。如表 4所示: DLIR-H 算 法重建的低剂量 60 keV VMIs 主观评分接近 ASIR-V 50% 算法重建的 100 kVp 常规增强扫描,差异无 统计学意义。DLIR-H 算法重建的 VUE 主观评分接 近 ASIR-V 40% 算法重建的 TUE,差异无统计学意 义。如图 1 所示,图 1A、1B 为 1 例 50 岁男性患者, 该患者系"主动脉弓及胸主动脉支架植入术后",图 1A 较图 1B 拥有更高的血管对比度,同时噪声接近, 因此两者主观评分接近。图 1C、1D 为 1 例 51 岁女 性患者,图 1E、1F 为 1 例 48 岁男性患者,2 例患者 分别诊断为"主动脉壁间血肿 Stanford-A 型"及"主 动脉壁间血肿 Stanford-B型",其VUE及TUE 图像

	表 4	主观评价比较(x ± s)
Tab.	4	Comparison of the subjectiv

evaluation between the groups $(\bar{x} \pm s)$					
Group	Subjective quality score	Z value	P value		
60 keV VMIs	4.8 ± 0.4	-0.485	0.628		
Standard enhancement	4.7 ± 0.4				
VUE	4.3 ± 0.6	-1.290	0.197		
TUE	4.4 ± 0.7				

图 1 图像质量及壁间血肿诊断能力的比较 Fig. 1 Comparison of the image quality and the ability for diagnosing intramural hematoma between the groups

A: The low-dose 60 keV VMIs reconstructed by DLIR-H; B: The 100 kVp conventional enhanced image reconstructed by ASIR-V 50%; C,E: The VUE images reconstructed by DLIR-H; D,F: The TUE images reconstructed by ASIR-V 40%; Red arrows: Crescent lesions on the peripheral wall of the ascending and descending aorta, respectively.

上均可见主动脉管壁外周新月形病灶。

3 讨论

有研究^[7]表明,高水平的 ASIR-V 算法重建得 到的图像细节显示不佳,例如经 ASIR-V 80% 重建 的图像具有明显的蜡样伪影,虽然在客观质量上有 着更低的噪声值,但是在主观方面难以进行诊断。 文献^[8]报道 DLIR-H 算法较 DLIR-L 及 DLIR-M 算 法得出的图像具有更高的质量,因此,该研究选取了 DLIR-H 与临床常用的 ASIR-V 40% 及 50% 算法进 行图像重建。该研究中 DLIR-H 联合低剂量 60 keV VMIs 客观质量总体优于 ASIR-V 50% 联合 100 kVp 常规增强扫描,两者主观评分接近;同时低剂量 60 keV VMIs 拥有更低的辐射剂量,因此认为低剂量能 谱增强扫描是替代常规增强扫描的可选项。

根据文献^[9]报道,60 keV 单能量图像拥有较高 的噪声比,是能谱成像在血管增强扫描方面的最佳 单能序列,因此,该研究采用了 60 keV 单能量图像 与常规增强扫描进行对比。能谱增强扫描相较于常 规增强扫描拥有降低 ED 值的可能性,这一点在其 他部位研究中同样得到了验证^[10],在临床活动中推 荐使用低剂量能谱增强扫描代替常规增强扫描以避 免患者遭受过多的辐射。张贺等^[9]将 DLIR 算法用 于双低增强扫描,其扫描所得图像质量优于 ASIR-V 50% 算法重建的能谱单能量图像;部分研究采取双 低剂量能谱扫描,联合 DLIR 算法得出的图像质量 优于常规 ASIR-V 50% 算法重建的增强图像^[11],说 明 DLIR 算法适用于多种扫描条件且拥有良好的临 床应用前景。

能谱 CT 通过高低电压顺时切换功能实现能谱 成像,结合其物质分离技术可以获得 VUE 图像^[12]。 Wang et al^[13]研究表明,低 keV 值的 VUE 图像优于 TUE,可以在一定程度上替代 TUE。该研究的 VUE 图像在显示钙化斑块及金属支架时存在部分假阴性 情况,但在壁间血肿病例中可以充分显示病变范围。 临床工作中大多数情况下 VUE 具有替代 TUE 的能 力,可以在降低辐射剂量的同时达到类似的诊断效 果,同时也能作为患者未进行 TUE 时的补充选项。

目前临床对疑似 AAS 的患者是否应当进行 TUE 扫描仍有争议,因为 TUE 增加了辐射剂量,同 时也存在假阴性可能,另外一些研究^[14-15]认为 TUE 可以帮助准确诊断壁间血肿和主动脉夹层动脉瘤, 因此具有一定的临床价值。该研究中 VUE 与 TUE 的客观评价及主观评分结果相近,两者均起到了诊 断 AAS 的效果,且 VUE 较 TUE 有着低辐射剂量的 优势,因此 VUE 在临床环境中拥有良好适应力,具 有在一定程度上替代 TUE 的可行性。

该研究存在一些局限性:样本数量较小,可能对 数据的统计学结果产生影响;由于样本呈偏态分布, 采用的统计学检验方法为秩和检验而非 t 检验,可 能对统计学检验结果产生一定的影响;未设置更多 组别的管电压进行对比,在今后的研究中将扩大样 本量及完善扫描条件,以期望得到更严谨的结果。

参考文献

- Morello F, Santoro M, Fargion A T, et al. Diagnosis and management of acute aortic syndromes in the emergency department [J]. Intern Emerg Med, 2021, 16 (1): 171 - 81. doi: 10.1007/s11739 - 020 - 02354 - 8.
- Yen H T, Wu C C, Lee Y W, et al. CT characteristics and clinical implications of acute type A aortic intramural hematoma [J]. Front Cardiovasc Med, 2023, 9: 1041796. doi:10.3389/fcvm. 2022.1041796.
- [3] Chaudhari H, Mahendrakar S, Baskin S E, et al. Contrast-induced acute kidney injury: evidence in support of its existence and a review of its pathogenesis and management [J]. Int J Nephrol Renovasc Dis, 2022, 15: 253 - 66. doi: 10. 2147/IJNRD. S371700.
- McLeavy C M, Chunara M H, Gravell R J, et al. The future of CT: deep learning reconstruction [J]. Clin Radiol, 2021, 76 (6): 407 - 15. doi:10.1016/j.crad.2021.01.010.
- [5] Koetzier L R, Mastrodicasa D, Szczykutowicz T P, et al. Deep learning image reconstruction for CT: technical principles and clinical prospects[J]. Radiology, 2023, 306(3): e221257. doi:10. 1148/radiol.221257.
- [6] Heinrich A, Yücel S, Böttcher B, et al. Improved image quality in transcatheter aortic valve implantation planning CT using deep learning-based image reconstruction [J]. Quant Imaging Med Surg, 2023, 13(2): 970-81. doi:10.21037/qims-22-639.
- [7] Sun J, Li H, Li J, et al. Improving the image quality of pediatric chest CT angiography with low radiation dose and contrast volume using deep learning image reconstruction[J]. Quant Imaging Med Surg, 2021, 11(7): 3051-8. doi:10.21037/qims-20-1158.
- [8] Park H J, Choi S Y, Lee J E, et al. Deep learning image reconstruction algorithm for abdominal multidetector CT at different tube voltages: assessment of image quality and radiation dose in a phantom study[J]. Eur Radiol, 2022, 32(6): 3974 - 84. doi:10. 1007/s00330 - 021 - 08459 - 8.
- [9] 张 贺,刘忠啸,孟闫凯,等.比较双低扫描深度学习重组、 能谱成像单能量重组 CTPA 图像质量、辐射剂量[J].临床放 射学杂志,2023,42(8):1258-64. doi:10.13437/j.enki.jer. 2023.08.008.

Zhang H, Liu Z X, Meng Y K, et al. To compare the imaging quality and radiation dose of double-low scanning mode with deep learning image reconstruction (DLIR) and spectral imaging with monochromatic reconstruction in CT pulmonary angiography (CT-PA)[J]. J Clin Radiol, 2023, 42(8): 1258 – 64. doi:10. 13437/j. cnki. jcr. 2023.08.008.

- [10] Cheng H W, Geng J H, Tan Z W, et al. The application value of gemstone spectral imaging (GSI) combined with an 80 mm widebody detector in head-neck CTA[J]. Curr Med Imaging, 2023. doi:10.2174/0115734056186139231101063906.
- [11] 杨彦兵,田艳鑫,王泽润,等. 深度学习重建算法联合"双低"技术在肺动脉 CT 血管造影中的可行性研究[J]. 临床放射学杂志,2023,42(3):493-7.
 Yang Y B, Tian Y X, Wang Z R, et al. Feasibility study of deep learning reconstruction algorithm combined with "double low" technique in computed tomography pulmonary angiography[J]. J Clin Radiol, 2023, 42(3):493-7.
- [12] Flohr T, Schmidt B. Technical basics and clinical benefits of photon-counting CT [J]. Invest Radiol, 2023, 58 (7): 441 - 50.

doi:10.1097/RLI.00000000000980.

- [13] Wang A, Li W, Huang W, et al. Dual-layer spectral computed tomography aortography using a seventy-five-percent-reduced iodine dose protocol and multiparameter spectral imaging: comparison with conventional computed tomography imaging [J]. Quant Imaging Med Surg, 2023, 13 (10): 6456 - 67. doi:10.21037/ qims - 23 - 101.
- [14] 李 敏,秦洪涛,许 茜,等. 薄层 CT 平扫对主动脉夹层诊断的价值[J]. 国际医学放射学杂志, 2020, 43(1):13-6. doi:10.19300/j.2020.L17333.
 Li M, Qin H T, Xu Q, et al. The value of non-enhanced thin-slice CT in diagnosis of aortic dissection[J]. Int J Med Radiol, 2020, 43(1):13-6. doi:10.19300/j.2020.L17333.
- [15] Ferrera C, Vilacosta I, Cabeza B, et al. Diagnosing aortic intramural hematoma: current perspectives [J]. Vasc Health Risk Manag, 2020, 16: 203-13. doi:10.2147/VHRM.S193967.

A study of deep-learning image reconstruction algorithm in virtual un-enhanced scanning of aortic CTA

Zhang Tianyu, Zhao Xiaoying, Song Jian, Shen Yi, Wu Xingwang (Dept of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022)

Abstract *Objective* To evaluate the clinical value of combining low-dose energy spectrum CT with virtual un-enhanced (VUE) scanning and deep-learning image reconstruction (DLIR) in aortic CT angiography (CTA). Methods In a prospective study, 94 patients scheduled for aortic CTA were randomized into two groups: a low-dose energy spectrum group and a standard 100 kVp enhancement group, with 47 patients in each. All patients initially underwent a true un-enhanced (TUE) scan at 120 kVp using adaptive statistical iterative reconstruction-V (ASIR-V) at 40% for image reconstruction. The low-dose group received enhanced scans using gemstone spectral imaging (GSI) mode with DLIR-H, producing 60 keV virtual monoenergetic images (VMIs) and VUE images. The standard group was scanned at 100 kVp, with images reconstructed using ASIR-V at 50%. Parameters were measured including CT values, noise (SD), signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) for key vascular and muscular areas, alongside the effective radiation dose (ED). Two radiologists evaluated the image quality using a 5-point scale. *Results* The low-dose group exhibited significantly higher SNR and CNR values in the ascending aorta, descending aorta, abdominal aorta, and common iliac artery compared to the standard group (P <0.05), with comparable subjective quality scores. The VUE images also demonstrated superior SNR values in the abdominal aorta, common iliac artery, and psoas major muscle, and CNR value in the ascending aorta compared to TUE images, with similar subjective quality. Importantly, the ED in the low-dose group was about 40% lower than that of the standard group. *Conclusion* Low-dose energy spectrum CT with DLIR in aortic CTA can significantly enhance SNR and CNR, while approximating the image quality of traditional TUE scans, thereby substantially reducing radiation exposure.

Key words a ortic CT angiography; deep-learning image reconstruction; energy spectrum CT; virtual un-enhanced; low radiation dose; image quality

Fund program Natural Science Foundation of Anhui Province (No. 2308085MH241) **Corresponding author** Wu Xingwang, E-mail; duobi2004@126.com