网络出版时间:2025-02-06 14:44:18 网络出版地址:https://link. cnki. net/urlid/34. 1065. r. 20250206. 1139. 017

南蛇藤提取物通过调控 Notch-1 信号通路对胃癌前病变的影响

文俊淞¹,潘子威¹,刘延庆²,朱耀东¹

(1安徽医科大学第一附属医院中西医结合肿瘤科,合肥 230022;

2扬州大学附属医院中医科,扬州 225009)

摘要 目的 观察南蛇藤提取物(COE)对胃癌前病变(GPL)的影响,并探究其对缺刻基因1(Notch-1)信号通路的作用。 方法 用复合模型复制法构建GPL大鼠模型,随机分为对照组、模型组和COE低、中、高剂量组[COE 12.5、25、50 mg/(kg· d)],干预4周后取胃组织,免疫组化(IHC)检测黏蛋白(MUC2、MUC5AC和MUC6)、富含亮氨酸重复序列的G蛋白耦联受体5(Lgr5)、增殖细胞核抗原Ki67(Ki67)及Notch-1的表达;聚合酶链式反应(PCR)测定上述黏蛋白的mRNA。N-甲基-N'-硝基-N-亚硝基胍(MNNG)诱导人胃黏膜上皮细胞(GES-1)构建GPL细胞模型,随机分成对照组、模型组和COE低、中、高浓 度组(COE 5、10、20 µg/ml),相应干预24h后,倒置显微镜下观察细胞的变化,Western blot法测定Notch-1和Lgr5的表达,免 疫荧光(IF)检测Notch-1的表达。结果 与对照组相比,模型组胃组织MUC2、Lgr5、Notch-1及Ki67表达升高(P<0.0001), MUC5AC和MUC6表达降低(P<0.0001);与模型组相比,COE各组的MUC2、Lgr5、Notch-1及Ki67表达降低(P<0.01), MUC5AC和MUC6表达降低(P<0.01)。相比对照组, GES-1模型组细胞形态不规则,细胞间连接疏松且排列紊乱; 而COE各 组较模型组细胞形态更规则、排列更整齐;此外,相比对照组,模型组Lgr5和Notch-1表达升高(P<0.0001), 而COE处理后, 二者表达则降低(P<0.001)。结论 COE能缓解GPL,其机制可能与下调Notch-1信号通路来改善胃黏膜黏液屏障功能及 抑制胃黏膜干细胞异常增殖有关。

关键词 南蛇藤提取物;胃癌前病变;Notch-1 信号通路;富含亮氨酸重复序列的 G 蛋白耦联受体 5;黏蛋白

中图分类号 R 285

文献标志码 A 文章编号 1000 - 1492(2025)02 - 0313 - 08 doi:10.19405/j.cnki.issn1000 - 1492.2025.02.018

胃癌前病变 (gastric precancerous lesions, GPL) 是一类容易发生癌变的胃黏膜病理组织学变化,即 胃黏膜的异型增生和肠上皮化生,主要伴存于慢性 萎缩性胃炎,GPL 的改善可极大地降低胃癌的发病 率和病死率,提高胃癌患者的长期生存率。胃黏膜 表面黏液与上皮细胞及隐窝细胞内分泌颗粒中的黏 液组成的"黏液屏障"是维护胃内稳态的重要结构, 黏蛋白(Mucin, MUC)是其中的重要成分,MUC 种 类及含量的改变都可能导致黏液屏障的破坏,进而 促进胃黏膜损伤和 GPL 进展。富含亮氨酸重复序 列的 G 蛋白耦联受体 5 (leucine-rich repeat-containing G-protein coupled receptor 5, Lgr5)是一种肿瘤 干细胞标志物,在胃癌发展过程中发挥着重要作 用^[1]。缺刻基因 1 (Notch-1) 信号通路是维持 Lgr5

作者简介:文俊凇,男,硕士研究生;

干细胞稳态的关键通路,该通路的抑制会促使 Lgr5 肠道干细胞向杯状细胞分化,从而强化肠道黏液屏障^[2];此外,Notch-1 信号通路激活可上调胃窦干细胞增殖活性,并促进胃癌的发生^[3]。南蛇藤是一种常见的中草药,本团队前期的研究表明,南蛇藤提取物(*Celastrus orbiculatus* extract, COE)具有抑制人胃癌裸鼠移植瘤生长的药理作用^[4],同时,COE 能缓解大鼠 GPL 的组织病理损伤^[5]。然而,COE 对 GPL 病变中的胃黏膜黏液屏障功能、胃黏膜干细胞异常增殖的影响仍不明确,对 Notch-1 信号通路的调节作用尚不十分清楚。该研究旨在观察 COE 对 GPL 的上述影响,并探究其对 Notch-1 信号通路的调节作用。

1 材料与方法

1.1 材料

1.1.1 动物 50 只 8 周龄的 SPF 级 SD 雄性大鼠, 购自安徽医科大学实验动物中心,体质量 (120 ± 10) g;生产许可证号:SCXK (皖) 2017-001,合格证号:340729220100026214;动物实验经安徽医科大学实验动物伦理委员会批准,批准号:LLSC20220294。

^{2024 - 10 - 11} 接收

基金项目:国家自然科学基金(编号:82274355);安徽省自然科学 基金(编号:2208085MH278)

朱耀东,男,副主任医师,硕士生导师,通信作者, E-mail: zhuyaodong2013@163.com

1.1.2 药物 南蛇藤饮片购自广州致信药业有限 公司(批号:070510);COE的制备参考巴赫等^[4] 的研究中所采用的方法,该方法已获国家发明专利 (专利号:ZL200710025343.3)。具体而言,即首先 将饮片碾成粉末状,用95%的乙醇加热回流提取3 次,回收溶剂后浓缩成干粉状;然后加水溶解、分散, 用石油醚和醋酸乙酯分别萃取3次,回收溶剂后减 压浓缩;最后于真空中冻干即获得COE。

1.1.3 试剂 N-甲基-N'-硝基-N-亚硝基胍(N-Methyl-N'-nitro-N-nitrosoguanidine, MNNG, 日本东 京 Kabushiki 株式会社,货号:ZG4T1-FP);胎牛血 清 (fetal bovine serum, FBS, 德国 Sigma 公司, 货 号:TMS-016)。抗黏蛋白2(Mucin 2, MUC2)、黏 蛋白 5AC (Mucin 5AC, MUC5AC)、甘油醛-3-磷酸 脱氢酶 (glyceraldehyde-3-phosphate dehydrogenase, GAPDH)、Notch1 和增殖细胞核抗原 Ki67 (proliferating cell nuclear antigen Ki67, Ki67) 抗体(英国 Abcam 公司, 货号: ab272692、ab3649、ab8245、 ab52627 和 ab16667);抗黏蛋白 6 (Mucin 6, MUC6)抗体(武汉 Biorbyt 公司,货号:orb1815206); 抗Lgr5 抗体(美国 Novusbio 公司,货号:NLS1236), 以 HRP 标记的山羊抗兔 IgG 抗体为二抗(美国 EarthOx 公司, 货号: E03012001); DAPI 染液、RIPA 裂 解液和 BCA 蛋白检测试剂盒 (上海碧云天生物技 术有限公司,货号:EZ3412B05、P0013B、P00009),聚 合酶链式反应(polymerase chain reaction, PCR)试剂 盒 (美国 Promega 公司, 货号: A6001)。人胃黏膜上 皮细胞(human gastric epithelial cells, GES-1, 上海 致备生物科技有限公司,货号:GOY-01X0551)。

1.1.4 主要仪器 倒置显微镜及共聚焦显微镜 (日本 Olympus 公司,型号:CKX-41、FV-3000);CO₂ 培养箱(美国 Thermo fisher 公司,型号:il60)。

1.2 方法

1.2.1 大鼠建模、治疗及标本采集 SD 大鼠饲养 于 SPF 级动物实验室,室温(25±2)℃,相对湿度 (55±5)%,适应1周后,用复合模型复制法^[6]构建 GPL 大鼠模型。首先把大鼠随机分为对照组(*n* = 10)与 GPL 模型组(*n*=40);GPL 模型组大鼠自由饮 用 170 μg/ml 的 MNNG 溶液,同时饲喂含0.03% 的 盐酸雷尼替丁饲料,喂食2d,禁食1d,于当日下午 灌胃 2% 水杨酸钠溶液 10 ml/kg。12 周后,于对照 组和模型组中分别随机取1只和4只处死,取胃组 织,用 HE 染色鉴定模型是否制备成功。模型判断 标准:胃黏膜腺体结构紊乱、萎缩且数目减少,细胞 核深染、增大,极性减弱,有丝分裂增加。将剩余GPL模型鼠随机均分为模型组与COE低、中、高剂量组分别灌胃12.5、25、50 mg/(kg・d)的COE],对照组与模型组予等量0.9%氯化钠溶液灌胃,1次/d,干预4周后处死,取胃体 – 胃窦交界处黏膜备用。

1.2.2 GES-1 细胞建模与千预 取 GES-1 细胞在 含体积分数 10% FBS 的 Roswell Park Memorial Institute 1640 (RPMI-1640)培养基中,于 37 ℃、体积 分数为 5% 的 CO₂ 条件下培养,参照武晓艳等^[7]的 方法,用 MNNG 诱导 GES-1 细胞构建 GPL 细胞模 型。即取对数生长期的细胞,用 2.0×10⁻⁵ mol/L 的 MNNG 诱导,避光培养 24 h 后更换新的鲜培养 基,1 周内可见大量细胞死亡脱落,期间正常换液, 当残存细胞生长至 70% ~80% 时进行传代并将其 视为 GPL 模型细胞,至第 4 代时冻存留用。将正常 GES-1 细胞设为对照组,将 GPL 模型细胞随机分为 模型组和 COE 低、中、高浓度组 (低、中、高浓度组 分别予以 5、10、20 μg/ml 的 COE 处理),对照组与 模型组不予处理。

1.2.3 免疫组织化学染色(immunohistochemistry, IHC) 组织标本经脱水、包埋和切片后,行脱蜡水 化和微波抗原修复,冷却后予以血清封闭,37 ℃条 件下加先后一抗及二抗温育,PBS冲洗3次,加DAB 及苏木精复染液,最后再行脱色、透明及封片。于镜 下放大200 倍观察,随机取5个视野。

1.2.4 免疫荧光实验(immunofluorescence, IF) 加一抗孵育后的切片于4℃环境下过夜,再以荧光 标记的二抗于37℃下孵育30 min,DAPI核染色后, 在共聚焦显微镜下观察。

1.2.5 PCR 实验 于组织标本中提取总 RNA,根据 M-MLV cDNA 合成试剂盒所述方法合成 Firststrand cDNA。按 GenBank 提供的基因序列设计引物,用 Primer 5.0 扩增 GAPDH、MUC2、MUC5AC 及 MUC6(表1),将 PCR 反应混合物放入 PCR 仪进行 扩增。每组6个样品,各取1μl作为 cNDA 模板扩 增。用1%琼脂糖凝胶、Gelstain 染料和凝胶成像系 统显色并采集结果。

1.2.6 Western blot 实验 将组织标本剪碎,加入 100 mg/ml比例的裂解液裂解,12 000 r/min条件下 离心15 min,经SDS-PAGE 电泳分离后转移到 PVDF 膜上。由5%脱脂奶粉于37 ℃条件下封闭及一抗 孵育,4℃环境下过夜,经二抗孵育,加 ECL 显色液 曝光。

Tab. 1Primer sequences for PCR		
Genes	Primer sequences (5'-3')	Length (bp)
MUC2	F:ACAAAAACCCCAGCAACAAG	372
	R:GAAGTCGGGACAGGTGATGT	
MUC5AC	F:CCGTTGTTTCTGCACCATGT	86
	R:AGTAACAGTGGCCGTCAAGG	
MUC6	F:TTACTCGCACTCAGAGACCTCCTTAG	149
	R:TCTGCCTGAAGATGGTGATGTTGTG	
GAPDH	F:GGCACAGTCAAGGCTGAGAATG	143
	R: ATGGTGGTGAAGACGCCAGTA	

表1 PCR 引物序列

1.3 统计学处理 采用 GraphPad Prism 9.0 软件 进行数据分析,数据资料采用 $\bar{x} \pm s$ 的形式表示,单 变量两组数据间比较采用 t 检验,多组数据间均值 比较采用单因素方差分析,方差不齐用非参数检验。 P < 0.05 为差异有统计学意义。

2 结果

2.1 COE 对 GPL 大鼠胃上皮细胞分泌性黏蛋白

及其 mRNA 表达的影响 IHC 和 PCR 对大鼠胃上 皮细胞分泌性黏蛋白及相应 mRNA 进行检测。IHC 结果显示:与对照组相比,模型组中 MUC2 蛋白的表 达增加 (P < 0.000 1), 而 MUC5AC 和 MUC6 蛋白 的表达减少(P < 0.0001)。与模型组相比,COE各 组小鼠胃上皮细胞中的 MUC2 蛋白表达水平显示出 不同程度的下调(P<0.0001),而 MUC5AC 和 MUC6 蛋白的表达则上调(P < 0.0001)。PCR 分 析显示,在模型组中,MUC2 mRNA 的表达高于对照 组 (P < 0.0001), 而在 COE 处理组中, MUC2 mR-NA 的表达则低于模型组 (P < 0.001)。相反,模型 组中 MUC5AC 和 MUC6 mRNA 的表达较对照组下 降 (P < 0.000 1), 而二者在 COE 各处理组中的表 达较模型组却上升(P<0.01),这一结果与相应蛋 白质水平的变化一致,并呈现剂量依赖性,其中高剂 量组最明显。见图1。

2.2 COE对GPL大鼠胃上皮细胞Lgr5、Ki67及

图 1 COE 对 GPL 小鼠胃黏膜中 MUC2、MUC5AC 和 MUC6 蛋白及 mRNA 表达的影响

Fig. 1 The effect of COE on the expression of MUC2, MUC5AC, and MUC6 proteins and mRNA in the gastric mucosa of GPL mice A: Immunohistochemical staining of MUC proteins ×200; B: Relative absorbance values of MUC proteins; C: Relative expression levels of MUC mRNA; a: Control group; b: Model group; c: COE low-dose group; d: COE medium-dose group; e: COE high-dose group; ^{####}P < 0.000 1 vs Control group; ^{**}P < 0.01, ^{****}P < 0.001, ^{****}P < 0.000 1 vs Model group.</p> **Notch-1 蛋白表达的影响** IHC 检测胃上皮细胞中的 Lgr5、Ki67 和 Notch-1 蛋白表达。结果显示,与对照组相比,模型组中 Lgr5、Ki67 和 Notch-1 蛋白的表达增加 (*P* < 0.000 1)。而在 COE 各处理组中,胃上皮细胞中的 Lgr5、Ki67 和 Notch-1 蛋白的表达却较模型组下调 (*P* < 0.01),并呈现剂量依赖性,其中高剂量组最明显,见图 2。

2.3 COE 对 GPL 细胞模型的影响 通过 MNNG 诱导 GES-1 细胞成功建立了 GPL 细胞模型,并用不 同浓度的 COE 进行干预。通过倒置显微镜观察细 胞的变化情况,结果显示,与对照组相比,模型组

GES-1 细胞的体积增大,形态不规则,核质比增加, 并且部分细胞核出现破裂现象,同时细胞间连接松 散、排列紊乱。而较之模型组,COE 各组中细胞呈 现正常大小,形态为圆形或椭圆形,核质比较小,且 未观察到细胞核破裂现象,同时连接更紧密、排列更 加整齐,并且变化呈现浓度依赖性,且高浓度组最显 著,见图 3。

2.4 COE 对 GPL 细胞模型中 Lgr5 及 Notch-1 蛋 白表达的影响 采用 IF 和 Western blot 检测了 GPL 细胞模型中 Lgr5 和 Notch-1 蛋白的表达情况。结果 显示,与对照组相比,模型组中的 Lgr5 和 Notch-1 蛋

图 2 COE 对 GPL 小鼠胃黏膜中 Lgr5、Ki67 及 Notch-1 蛋白表达的影响

Fig. 2 Effect of COE on the expression of Lgr5, Ki67 and Notch-1 proteins in the gastric mucosa of GPL mice

A: Immunohistochemical staining of Lgr5 and Ki67 proteins ×200; B: Relative absorbance values of Lgr5 and Ki67 proteins; C: Immunohistochemical staining of Notch-1 protein ×200; D: Relative absorbance values of Notch-1 protein; a: Control group; b: Model group; c: COE low-dose group; d: COE medium-dose group; e: COE high-dose group; $^{####}P < 0.000 \ 1 \ vs$ Control group; $^{**}P < 0.01$, $^{***}P < 0.001$, $^{****}P < 0.000 \ 1 \ vs$ Model group; group; $^{**}P < 0.001$, $^{****}P < 0.000 \ 1 \ vs$ Model group; $^{**}P < 0.001$, $^{****}P < 0.000 \ 1 \ vs$ Model group; $^{**}P < 0.000 \ 1 \ vs$ Model group; $^{**}P < 0.000 \ 1 \ vs$ Model group; $^{**}P < 0.000 \ 1 \ vs$ Model group; $^{**}P < 0.000 \ 1 \ vs$ Model group; $^{**}P < 0.000 \ 1 \ vs$ Model group; $^{**}P < 0.000 \ 1 \ vs$ Model group; $^{**}P < 0.000 \ 1 \ vs$ Model group; $^{**}P < 0.000 \ 1 \ vs$ Model group; $^{**}P < 0.000 \ 1 \ vs$ Model group; $^{**}P < 0.000 \ 1 \ vs$ Model group; $^{**}P < 0.000 \ 1 \ vs$ Model group; $^{**}P < 0.000 \ 1 \ vs$ Model group; $^{**}P < 0.000 \ 1 \ vs$ Model group; $^{**}P < 0.000 \ 1 \ vs$ Model group; $^{**}P < 0.000 \ 1 \ vs$ Model group; $^{**}P < 0.000 \ 1 \ vs$ Model group; $^{**}P < 0.000 \ 1 \ vs$ Model group; $^{**}P < 0.000 \ 1 \ vs$ Model group; $^{**}P < 0.000 \ 1 \ vs$ Model group; $^{**}P < 0.000 \ 1 \ vs$ Model group; $^{**}P < 0.000 \ 1 \ vs$ Model group; $^{**}P < 0.000 \ 1 \ vs$ Model group; $^{**}P < 0.000 \ 1 \ vs$ Model group.

白的表达增加 (P < 0.000 1);然而,当加入 COE 后, Lgr5 和 Notch-1 蛋白的表达量减少 (P <

0.001),且这种减少呈现出浓度依赖性,其中高浓 度组的抑制效果最为显著,见图 4。

图 3 COE 对 MNNG 诱导 GES-1 细胞建立的 GPL 细胞模型的影响 ×100

Fig. 3 Effect of COE on the GPL cell model established by GES-1 cells induced by MNNG $\times 100$

a: Control group; b: Model group; c: COE low concentration group; d: COE medium concentration group; e: COE high concentration group.

A: Western blot analysis of Lgr5 and Notch-1 proteins; B: Relative expression levels of Lgr5 and Notch-1 proteins; C: Relative fluorescence intensity of Notch-1 protein; a: Control group; b: Model group; c: COE low concentration group; d: COE medium concentration group; e: COE high concentration group; $^{\#\#\#}P < 0.000 \ 1 \ vs$ Control group; $^{***}P < 0.001$, $^{****}P < 0.000 \ 1 \ vs$ Model group.

3 讨论

中药南蛇藤最早载于清代的《植物名实图考》, 其味辛而性温,归肝、脾等经,有解毒消肿、祛风除湿 及活血通经之效;研究显示,其提取物 COE 能抑制 人胃癌裸鼠皮下移植瘤的生长,其机制可能与其能 影响上皮间质转化有关^[4]。同时,COE 能有效减轻 GPL 的病理损伤、调控细胞的能量代谢方式^[5]。在 此基础上,本研究进一步探讨了 COE 对 GPL 大鼠 胃黏膜黏液屏障功能的改善作用,及对胃黏膜干细 胞异常增殖的抑制作用,并研究了其对 Notch-1 信 号通路的调节作用,旨在拓宽对 COE 改善 GPL 的 内在机制的理解,并丰富相关理论依据。

Notch 信号通路是由其受体、配体、DNA 结合蛋 白、靶基因和靶蛋白等组成,其对干细胞增殖、分化 和凋亡具有重要作用,同时也是组织损伤后愈合过 程的关键调节因子^[8];Notch 信号在正常细胞中的 功能常随细胞环境而改变,在肿瘤疾病中也会因不 同细胞环境表现出截然相反的作用,如在小细胞肺 癌中,Notch-1 可发挥抑癌基因作用^[9],但其在肝癌 中则发挥着癌基因的作用^[10]。Notch-1 在生物学功 能上的异质性激发了该团队对其在胃癌进展中作用 的深入探究。绝大多数研究表明,GPL 的进展过程 中 Notch-1 表达逐渐上调,并通过调控胃上皮细胞 的化生、增殖和凋亡等过程促进病程[11],而沉默 Notch-1 可以诱导胃癌细胞有丝分裂过程的阻滞、并 促进细胞凋亡,进而抑制细胞增殖、迁移和侵袭^[12]。 这表明, Norch-1 信号通路激活可能促进 GPL 的进 展和诱导胃癌的发生,该研究结果与此一致,GPL大 鼠及细胞模型中 Notch-1 的表达较对照组均增高, 而 COE 则能有效地降低其表达。

胃黏膜表面的黏液层是保护胃黏膜免受内外病 理因素损伤的第一层屏障,黏蛋白是其中的重要成 分之一。MUC2 是肠型黏蛋白的一种,在正常胃黏 膜中不表达,而在 GPL 和胃癌中表达明显增多^[13]。 相反,MUC5AC 及 MUC6 属胃型黏蛋白,表达于正 常胃黏膜,具有保护和润滑的作用;然而,他们在 GPL 及胃癌中表达下调,并与疾病的进展、病灶的恶 性程度等呈负相关^[14]。此外,MUC5AC 和 MUC6 与 胃上皮细胞的正常增殖分化有关,提高 MUC5AC 与 MUC6 的表达水平,可抑制 GPL 的发生、发展及肿瘤 的侵袭^[15]。该研究结果与绝大多数的研究结果一 致,即 GPL 大鼠胃上皮中 MUC2 表达增加,而 MUC5AC 及 MUC6 表达下降。研究表明^[16],溃疡性 结肠炎中,Notch-1 信号通路的激活与 MUC2 的表达 下调及肠黏膜黏液屏障的丧失有关,而 Notch-1 信 号通路的抑制则能促进 MUC2 表达及黏液屏障的修 复。由此推论,Notch-1 信号通路与黏蛋白的正常表 达及胃、肠的黏液屏障功能密切相关,但对黏蛋白的 调节作用可能具有异质性;而 COE 能通过抑制 GPL 病变中 MUC2 的高表达,并促进 MUC5AC 和 MUC6 的表达,从而改善胃黏膜的黏液屏障,这可能与 COE 抑制 Norch-1 信号通路有关。

Lgr5 作为肿瘤干细胞标志物,在成人对照组织 中呈低水平表达,但在肝癌、食管癌及胃癌等病灶中 过表达,并参与疾病进展、与其不良预后有关。Lgr5 异常表达可促进干细胞致瘤性增殖,在 GPL 进展至 胃癌的过程中,Lgr5 表达增多,通过调控细胞周期 和凋亡途径加速疾病恶性转化,是疾病发生和进展 的关键^[17]。Lgr5 位于 Notch-1 通路的下游, Notch 通路的激活将诱导 Lgr5 干细胞异常活化和异常增 殖,进而促进胃癌的发生^[3]。本研究中,GPL 大鼠 及细胞模型中的 Notch-1 和 Lgr5 蛋白的表达较对照 组显著上调,且 GPL 大鼠胃黏膜组织细胞增殖活性 提高,相反,COE则能下调 Notch-1 通路,并抑制 GPL 大鼠胃黏膜细胞的增殖活性。这表明, COE 可 能通过下调 Notch-1 信号通路和 Lgr5 的异常表达, 从而抑制胃黏膜干细胞的活化和异常增殖,这对延 缓 GPL 的恶性进展具有重要意义。

综上所述, GPL 病变中, 胃黏膜黏液屏障功能的 损伤及胃黏膜干细胞的异常活化和增殖均可能与 Notch-1 信号通路的激活有关。而另一方面, COE 则 可能通过抑制 Notch-1 信号通路, 改善 GPL 的黏液 屏障功能, 并抑制胃黏膜干细胞的异常增殖, 从而缓 解 GPL。该研究为临床治疗 GPL 提供了新的思路 和方向, 并凸显了中医药干预 GPL 的独特优势; 然 而, 功能基因组学研究的缺失使本研究存在一定的 局限, 但这也将是未来研究的重点。

参考文献

- [1] Li X B, Yang G, Zhu L, et al. Gastric Lgr5(+) stem cells are the cellular origin of invasive intestinal-type gastric cancer in mice
 [J]. Cell Res, 2016, 26(7): 838-49. doi:10.1038/cr.2016.
 47.
- [2] Wu A, Yu B, Zhang K, et al. Transmissible gastroenteritis virus targets Paneth cells to inhibit the self-renewal and differentiation of Lgr5 intestinal stem cells via Notch signaling[J]. Cell Death Dis, 2020, 11(1):40. doi: 10.1038/s41419-020-2233-6.
- [3] Demitrack E S, Gifford G B, Keeley T M, et al. Notch signaling regulates gastric antral Lgr5 stem cell function [J]. EMBO J,

2015, 34(20): 2522-36. doi:10.15252/embj.201490583.

- [4] 巴 赫,彭 强,朱耀东.抑癌基因 PDCD4 的表达对南蛇藤 提取物抑制人胃癌裸鼠移植瘤生长的影响[J].安徽医科大 学学报,2021,56(3):358-62. doi:10.19405/j.cnki. issn1000-1492.2021.03.005.
- [4] Ba H, Peng Q, Zhu Y D. Effect of tumor suppressor gene PDCD4 expression level on inhibition of human gastric cancer xenograft growth in nude mice by *Celastrus orbiculatus* extract [J]. Acta Univ Med Anhui, 2021, 56 (3): 358 62. doi:10.19405/j. enki. issn1000 1492.2021.03.005.
- [5] 张效泽,朱方圆,刘延庆,等.南蛇藤提取物通过抑制有氧糖 酵解对大鼠胃癌前病变的影响[J].中药新药与临床药理, 2023,34(11):1487-94.doi:10.19378/j.issn.1003-9783. 2023.11.001.
- [5] Zhang X Z, Zhu F Y, Liu Y Q, et al. Effects of *Celastrus orbiculatus* extract on precancerous lesions of gastric cancer in rats by inhibiting aerobic glycolysis[J]. Tradit Chin Drug Res Clin Pharmacol, 2023, 34 (11): 1487 94. doi:10.19378/j.issn.1003 9783.2023.11.001.
- [6] Chu F, Li Y, Meng X, et al. Gut microbial dysbiosis and changes in fecal metabolic phenotype in precancerous lesions of gastric cancer induced with N-methyl-N'-nitro-N-nitrosoguanidine, sodium salicylate, ranitidine, and irregular diet [J]. Front Physiol, 2021, 12: 733979. doi:10.3389/fphys.2021.733979.
- [7] 武晓艳,冯小可,崔国良,等.以MNNG 刺激GES-1 细胞构建 上皮间充质化细胞模型[J].中国中西医结合消化杂志, 2019,27(4):272-9. doi:10.3969/j.issn.1671-038X. 2019.04.08.
- [7] Wu X Y, Feng X K, Cui G L, et al. Establishment of cell model of the epithelial-mesenchymal transition by stimulating GES-1 cells with N-methyl-N'-nitro-N-nitrosoguanidine[J]. Chin J Integr Tradit West Med Dig, 2019, 27(4): 272 – 9. doi:10.3969/j.issn. 1671 – 038X.2019.04.08.
- [8] Wang M, Yu F, Zhang Y, et al. Novel insights into Notch signaling in tumor immunity: potential targets for cancer immunotherapy
 [J]. Front Immunol, 2024, 15: 1352484. doi:10.3389/fimmu. 2024.1352484.
- [9] Nowell C S, Radtke F. Notch as a tumour suppressor [J]. Nat Rev Cancer, 2017, 17(3): 145 - 59. doi:10.1038/nrc.2016. 145.
- [10] Gao J, Xiong Y, Wang Y, et al. Hepatitis B virus X protein acti-

vates Notch signaling by its effects on Notch1 and Notch4 in human hepatocellular carcinoma[J]. Int J Oncol, 2016, 48(1): 329 – 37. doi:10.3892/ijo.2015.3221.

- [11] Kim T H, Shivdasani R A. Notch signaling in stomach epithelial stem cell homeostasis[J]. J Exp Med, 2011, 208(4): 677-88. doi:10.1084/jem.20101737.
- [12] Kim S J, Lee H W, Baek J H, et al. Activation of nuclear PTEN by inhibition of Notch signaling induces G2/M cell cycle arrest in gastric cancer[J]. Oncogene, 2016, 35(2): 251 - 60. doi:10. 1038/onc. 2015. 80.
- [13] 谷 培,常丽丽,牛晓蕾,等.胃癌、胃癌前状态及病变黏膜 组织 MUC 及 EGFR 的表达与 Hp 感染的关系[J].河北医科 大学学报,2023,44(11):1255-9.doi:10.3969/j.issn.1007 -3205.2023.11.003.
- [13] Gu P, Chang L L, Niu X L, et al. The relationship of expression of MUC and EGFR in gastric cancer, gastric precancerous state and mucosal lesions with Hp infection [J]. J Hebei Med Univ, 2023, 44(11): 1255 9. doi:10.3969/j.issn.1007 3205.2023.11.003.
- [14] Kerckhoffs K G P, Liu D H W, Saragoni L, et al. Mucin expression in gastric- and gastro-oesophageal signet-ring cell cancer: results from a comprehensive literature review and a large cohort study of Caucasian and Asian gastric cancer[J]. Gastric Cancer, 2020, 23(5): 765 - 79. doi:10.1007/s10120 - 020 - 01086 -0.
- [15] Wang P, Xu T, Yan Z, et al. Jian-Pi-Yi-Qi-Fang ameliorates chronic atrophic gastritis in rats through promoting the proliferation and differentiation of gastric stem cells [J]. Ann Transl Med, 2022, 10(17): 932. doi:10.21037/atm-22-3749.
- [16] 高玲肖, 刘建平, 杨 倩, 等. 泄浊解毒方对溃疡性结肠炎小 鼠结肠组织 Notch1、Hath-1 及 MUC2 蛋白表达的影响[J]. 临 床消化病杂志, 2022, 34(6): 440 - 5. doi:10.3870/lexh.j. issn.1005 - 541X.2022.06.007.
- [16] Gao L X, Liu J P, Yang Q, et al. The effect of Xiezhuojiedu recipe on Notchl, Hath-l and MUC2 protein expression in colon tissues of ulcerative colitis mice[J]. Chin J Clin Gastroenterol, 2022, 34 (6): 440 5. doi:10.3870/lcxh.j.issn.1005 541X.2022.06.007.
- [17] Xiao S, Zhou L. Gastric stem cells: physiological and pathological perspectives [J]. Front Cell Dev Biol, 2020, 8: 571536. doi:10. 3389/fcell. 2020. 571536.

Effect of *Celastrus orbiculatus* extract on gastric precancerous lesions through the regulation of the Notch-1 signaling pathway

Wen Junsong¹, Pan Ziwei¹, Liu Yanqing², Zhu Yaodong¹

(¹Dept of Integrative Medicine and Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022; ²Dept of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou 225009)

Abstract *Objective* To observe the effect of *Celastrus orbiculatus* extract (COE) on gastric precancerous lesions (GPL) and to explore its role in the Notch-1 signaling pathway. *Methods* GPL rat models were established using a composite model replication method, and the rats were randomly divided into a control group, a model group, and COE low, medium and high dose groups [COE at 12.5, 25, and 50 mg/(kg · d)]. After 4 weeks of intervention, gastric tissue was collected, and immunohistochemistry (IHC) was performed to detect the expression of mucins (MUC2, MUC5AC, and MUC6), Leucine-rich repeat-containing G-protein coupled receptor 5 (Lgr5), Pro-

liferating Cell Nuclear Antigen (Ki67), and Notch-1. Polymerase chain reaction (PCR) was used to determine the mRNA levels of the aforementioned mucins. Human gastric epithelial cells (GES-1) were induced with N-Methyl-N'-nitro-N-nitrosoguanidine (MNNG) to establish a GPL cell model. The cells were randomly divided into control, model, and COE low, medium, and high concentration groups (COE at 5, 10, and 20 µg/ml). After 24 hours of corresponding interventions, changes in cell morphology were observed under an inverted microscope. Western blot was used to measure the expression of Notch-1 and Lgr5, and immunofluorescence (IF) was employed to detect Notch-1 expression. **Results** Compared to the control group, the expression of MUC2, Lgr5, Notch-1, and Ki67 in the gastric tissue of the model group rats significantly increased $(P < 0.000 \ 1)$, while the expression of MUC5AC and MUC6 decreased (P < 0.000 1). In comparison to the model group, the expressions of MUC2, Lgr5, Notch-1, and Ki67 were significantly reduced in the COE groups (P < 0.01), while the expression of MUC5AC and MUC6 significantly increased (P < 0.01). In the GES-1 model group, the cells exhibited irregular morphology, loose intercellular connections, and disorganized arrangement compared to the control group. In contrast, the cells in the COE groups displayed a more regular morphology and a more organized arrangement than those in the model group. Additionally, compared to the control group, the expression of Lgr5 and Notch-1 in the model group were significantly elevated (P < 0.000 1), whereas after COE treatment, their expressions were markedly reduced (P < 0.001). Conclusion COE can alleviate GPL, and its mechanism may be associated with the downregulation of the Notch-1 signaling pathway, which improves gastric mucosal mucin barrier function and inhibits the abnormal proliferation of gastric mucosal stem cells.

Key words *Celastrus orbiculatus* extract; gastric precancerous lesions; Notch-1 signaling pathway; leucine-rich repeat-containing G-protein coupled receptor 5; mucin

Fund programs National Natural Science Foundation of China (No. 82274355); Natural Science Foundation of Anhui Province (No. 2208085MH278)

Corresponding author Zhu Yaodong, E-mail: zhuyaodong2013@163.com

(上接第312页)

blot was applied to detect sirt1 protein in coronary arteries. HE staining was applied to detect pathological changes in coronary arteries. Mouse thymus index and spleen index were detected. Flow cytometry was applied to detect helper T cells 17 (Th17)/regulatory T cells (Treg) in peripheral blood. ELISA was applied to detect the levels of interleukin (IL)-17 and IL-10 in mouse serum. The targeting relationship between sirt1 and miR-155-5p was validated. **Results** Compared with the control group, there was a large amount of inflammatory cell infiltration in the coronary arteries of mice in the Kawasaki disease group. The miR-155-5p expression, Th17 ratio, Th17/Treg ratio, and IL-17 level increased. The sirt1 protein expression, thymus index, spleen index, Treg ratio, and IL-10 level decreased (P < 0.05). Compared with the Kawasaki disease group, the inflammatory cell infiltration in the coronary arteries of mice in the miR-155-5p antagonist group was alleviated. The miR-155-5p expression, Th17 ratio, Th17/Treg ratio, and IL-17 level decreased. The sirt1 protein expression, thymus index, spleen index, spleen index, Treg ratio, and IL-10 level increased (P < 0.05). Si-sirt1 weakened the promoting effect of miR-155-5p inhibition on Th17/ Treg balance and the inhibitory effect on vascular inflammation in Kawasaki disease mice, miR-155-5p targeted and regulated sirt1. **Conclusion** The mechanism by which inhibiting miR-155-5p promotes Th17/Treg balance and inhibits vascular inflammation in Kawasaki disease mice may be related to the upregulation of sirt1 expression.

Key words miR-155-5p; silent information regulator 1; Kawasaki disease; helper T cells 17; regulatory T cells; inflammation; immunity

Fund program Basic Scientific Research Project of Liaoning Provincial Department of Education (No. LJKMZ20221229)

Corresponding author Chen Yue, E-mail: 1272059073@qq.com