顺铂耐药人胃癌细胞 SGC-7901 的耐药特性的研究

黄娜娜 张逸寅 顺康生

摘要 目的 研究人胃癌细胞 SGC-7901 顺铂耐药后的细胞 特性的变化。方法 用彗星实验(SCGE)观察 SGC-7901 与 胃癌细胞顺铂耐药细胞株(SGC-7901/DDP)的 DNA 损伤修 复的能力 观察 SCGE 检测图像的尾长评定 DNA 的修复能 力; 通过观察胃腺癌 SGC-7901 细胞和 SGC-7901/DDP 的形 态学不同,比较 SGC-7901 和 SGC-7901/DDP 自身变化; 用细 胞划痕的方法检测 SGC-7901/DDP 和 SGC-7901 的迁移能 力 通过对其迁移能力的观察 初步评价两株肿瘤细胞的侵 袭能力; MTT 法分别检测临床常用化疗药物 5-氟尿嘧啶、依 托泊苷、表阿霉素、多西紫杉醇、奥沙利铂对 SGC-7901/DDP 的敏感性和 ICs。观察这些药物对 SGC-7901/DDP 的敏感性 和交叉耐药性。结果 人胃腺癌 SGC-7901/DDP 较 SGC-7901 的 SCGE 图像的尾长短 SGC-7901 / DDP 的 DNA 损伤修 复能力比 SGC-7901 强 表明顺铂耐药与其 DNA 损伤修复能 力密切相关; SGC-7901/DDP 和 SGC-7901 的形态不同 SGC-7901/DDP SGC-7901 体积较小、核分裂较多; 通过用细胞划 痕的方法观测到 SGC-7901/DDP 较 SGC-7901 的迁移能力变 差: SGC-7901/DDP 对 5-氟尿嘧啶、依托泊苷、表阿霉素、多 西紫杉醇、奥沙利铂有不同程度的交叉耐药性,其 IC50 较 SGC-7901 明显增加。结论 人胃癌细胞 SGC-7901 对顺铂 耐药可使 DNA 损伤修复能力增强 并具有多重耐化疗药性, 但其细胞的迁移能力减弱。

关键词 胃肿瘤; 多药耐药性; 顺铂耐药性; 彗星实验中图分类号 R 735.2

文献标志码 A 文章编号 1000-1492(2015)-0298-04

顺铂是胃癌基础化疗药物,但是一些肿瘤患者对顺铂耐药,减弱顺铂的疗效。肿瘤化疗药物的多药耐药是指对一种药物具有耐药性的同时,对其他结构不同、作用靶点不同的抗肿瘤药物也具有耐药性。多药耐药性是导致肿瘤化疗失败的重要原因之一[1]。该研究主要观察顺铂耐药细胞(SGC-7901/DDP)的耐药特性,主要包括SGC-7901 在对顺铂耐药的同时对其他胃癌常用化疗药的耐药情况,及SGC-7901/DDP与SGC-7901 在 DNA 损伤修复能力及其迁移能力方面的差异,观察 SGC-7901 在产生

顺铂耐药的过程中其他的一些细胞特性的变化,旨在为进一步研究胃癌细胞 SGC-7901 对顺铂耐药的机制奠定基础。

1 材料与方法

1.1 材料 人胃癌细胞株 SGC-7901 和 SGC-7901/DDP 均购自南京凯基生物公司; RPMI-1640 细胞培养液购自美国 Gibco 公司; 胎牛血清购自杭州四季青生物材料有限公司; 胰蛋白酶购自上海碧云天生物技术有限公司; PBS 为本实验室配置; 顺铂、依托泊苷购自山东齐鲁药业; 奥沙利铂、吉西他滨购自江苏恒瑞生物有限公司; 5-氟尿嘧啶购自天津金耀氨基酸有限公司; 多西紫杉醇购自英国安万特公司; MTT、正常熔点琼脂糖、低熔点琼脂糖、肌氨酸钠、Triton X-100、EB、EDTA-2Na、二甲基亚矾(DMSO) 均购自美国 Sigma 公司。

1.2 主要仪器 稳定电泳装置购自北京六一仪表厂; 倒置荧光显微镜购自日本奥林巴斯公司; 显微成像系统购自日本佳能公司; ELX-800 UV 酶标仪购自美国 BIO-TEK 公司。

1.3 方法

1.3.1 细胞培养 人胃癌细胞 SGC-7901 细胞株和 SGC-7901/DDP 培养于 RPMI-1640 培养液(90%) 和 胎牛血清(10%)、青霉素 100~U/ml、链霉素 100~U/ml 的混合培养基中 在 $5\%~CO_2$ 、37 ℃ 的温箱培养。 SGC-7901/DDP 在无药物培养基连续培育 7 d ,然后将顺铂(终浓度 800~ng/ml) 添加到 SGC-7901/DDP 的 RPMI-1640 培养基。 $2\sim3~d$ 进行一次消化传代,使细胞处于对数生长期。

1.3.2 彗星实验 (single cell gel electrophoresis, SCGE) 取处于对数生长期的 SGC-7901 和 SGC-7901 /DDP 细胞 ,以 0.25% 胰蛋白酶消化 ,用 RPMI-1640 培养基制备成浓度为 1×10^5 个/ml 单细胞悬液 ,台盼蓝染色细胞存活率 > 90% 进行 SCGE。取 110 μ l 已熔化的 0.5% 正常熔点琼脂糖浇注到全磨砂载玻片上 4% 固化 10 min 后,依次加入 10 μ l 细胞悬液与 75 μ l 0.5% 低熔点琼脂糖的混合液 4% 固化 10 min 固化后的玻片沉浸在细胞裂解液中 4% 飞避光裂解 1 h。 PBS 清洗载玻片后用碱性电泳液

2014-11-24 接收

基金项目: 安徽省自然科学基金(编号: 1408085 MH203)

作者单位: 安徽医科大学第一附属医院肿瘤科 ,合肥 230022

作者简介: 黄娜娜 ,女 ,硕士研究生;

顾康生 ,男 ,教授 ,主任医师 ,博士生导师 ,责任作者; E-mail: gukangsheng12@163. com

浸没载玻片 4 $^{\circ}$ C 避光解旋 DNA 20 min。将电泳仪电压维持 25 V ,电流维持在 0.3 A ,恒压恒流 4 $^{\circ}$ C 电泳 25 min ,注意避光操作。然后用中和缓冲液(pH 7.4) 漂洗 ,用甲醇固定 ,滴加 30 $^{\circ}$ μl 浓度为 20 $^{\circ}$ μg/ml 的 EB 染液进行染色。400 倍荧光显微镜下紫外光激发显像 随机转动视野拍摄 30 个细胞的 SCGE 检测图像 ,实验独立重复 3 次 $^{[2]}$ 。

- 1.3.3 细胞形态学观察 通过倒置显微镜下观察 SGC-7901 和 SGC-7901/DDP 形态的不同 ,拍照记录。
- 1.3.4 细胞划痕实验 取状态良好的人胃腺癌细胞株 SGC-901 和 SGC-901/DDP ,胰蛋白酶消化 5×10^6 个/ml 制备接种到 24 孔板 5% $CO_2 \times 37$ $^{\circ}$ 的温箱培养 细胞长成单层后丢弃介质 ,用灭菌枪头借助无菌尺在每孔的底部中间划一个 "十"字伤口 ,用PBS 轻轻清洗 3 遍 ,洗去悬浮的细胞 ,每孔加入 2 ml的无血清的 RPMI-1640 培养基培养 ,分别于 $0 \times 12 \times 100\%$,每次实验做 3 个复孔 实验独立重复 3 次。
- 1.3.5 MTT 法检测药物的敏感性 取状态良好的 人胃癌 SGC-7901 和 SGC-7901/DDP 将浓度为 7 × 10⁴ 个/ml 的细胞加入到 96 孔板中 ,每孔 100 μl 体 积 过夜培育。当达到80%~90%细胞密度,加化 疗药物干预,并设置不同浓度(以上每组3个平行 孔) 48 h 同时设置调零孔和无药物孔。顺铂(0.03、 0.3、3、30、60 μg/ml)、5-氟尿嘧啶(0.1、1、10、100、 200 μg/ml)、依托泊苷(5、10、20、40、80 μg/ml)、表 阿霉素(0.01、0.1、1、10、100 μg/ml)、多西紫杉醇 (5、10、20、40、80 μg/ml)、奥沙利铂(5、50、100、200、 400 μg/ml)。在实验孔加入 MTT(5 mg/ml) 20 μl, 37 ℃培育 4 h 注意避光操作。结束培育 将上清液 完全吸去 ,各孔加入 DMSO 150 µl ,振荡 15 min ,使 结晶充分溶解。用酶联免疫吸附法在 570 nm 波长 检测各孔光密度值(optical density,OD),求3孔的 平均值,实验独立重复3次。细胞存活率(%)= (实验组 OD 平均值/对照组的 OD 平均值) × 100% 同时计算出各类药物的半数抑制率(half maximal inhibitory concentration of a substance IC_{50} , 细胞对不同药物的耐药倍数 = SGC-7901/DDP 对不 同化疗药物的 $IC_{50}/SGC-7901$ 对化疗药物的 IC_{50} 。
- **1.4** 统计学处理 采用 SPSS 19.0 统计软件分析。数据以 $\bar{x} \pm s$ 表示 ,单变量两组之间的比较采用 t 检

验 组间比较采用单因素方差分析 ,检验水准 $\alpha = 0.05$ 。

2 结果

2.1 人胃腺癌细胞株 SGC-7901 和 SGC-7901/DDP的 DNA 损伤修复能力的差异 SCGE 的结果是利用 CASP 软件分析尾长作为 DNA 损伤与修复的评价指标。人胃腺癌细胞 SGC-7901 和 SGC-7901/DDP 的彗星尾长分别为 29.71 ± 4.45 和 20.38 ± 3.48(t = 16.67 P < 0.05) 见图 1、2。

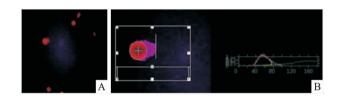


图 1 人胃腺癌细胞 SGC-7901 的 SCGE 检测图像 A: SGC-7901 的 SCGE 图像; B: CASP 软件检测 SGC-7901 的 SCGE 图像

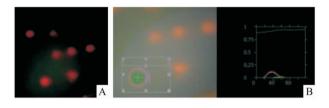


图 2 人胃腺癌细胞 SGC-7901/DDP 的 SCGE 检测图像 A: SGC-7901/DDP 的 SCGE 图像; B: CASP 软件检测 SGC-7901/ DDP 的 SCGE 图像

2.2 细胞形态 人胃腺癌 SGC-7901 细胞显微镜下观察为单层、形状规则、大小均匀、高折射率、细胞边界、核大、圆形或椭圆形; 人胃癌 SGC-7901/DDP 细胞呈不规则、细胞大小不均一、多核、折光度低 ,见图3。

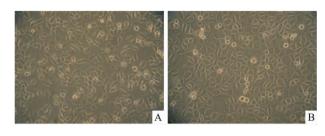


图 3 人胃癌 SGC-7901/DDP 和人胃癌 SGC-7901 细胞形态 SP×100 A: SGC-7901/DDP; B: SGC-7901

2.3 细胞划痕实验 用显微镜测量人胃腺癌 SGC-7901 和 SGC-7901 /DDP 在 0、12、24 h 细胞划痕的宽

度 結果显示: SGC-7901 细胞 12×24 h 划痕宽度比 SGC-7901/DDP 细胞划痕宽度明显缩小(F=77.12, P<0.05) SGC-7901 的迁移能力比 SGC-7901/DDP 的迁移能力强 ,见图 4×5 。

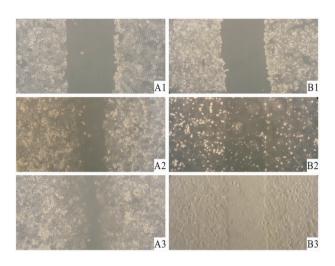


图 4 人胃癌 SGC-7901 和 SGC-7901/DDP 细胞的迁移能力 SP×200 A: SGC-7901; B: SGC-7901/DDP; 1: 0 h; 2: 12 h; 3: 24 h

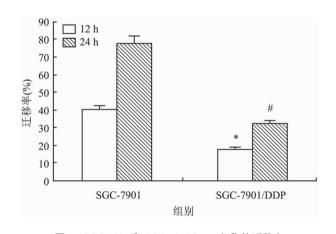


图 5 SGC-7901 和 SGC-7901/DDP 细胞的迁移率与 SGC-7901 组 12 h 比较: * P < 0.05;与 SGC-7901 组 24 h 比较: *P < 0.05

2.4 胃腺癌 SGC-7901/DDP 对各类化疗药的敏感性 人胃腺癌细胞 SGC-7901 和 SGC-7901/DDP 对不同药物的敏感性 顺铂、表阿霉素、5-氟尿嘧啶、奥沙利铂、依托泊苷、多西紫杉醇对顺铂耐药株及其亲本细胞 SGC-7901 的 IC_{50} 和耐药倍数见表 1 ,SGC-7901/DDP 对顺铂耐药的同时对表阿霉素、5 氟尿嘧啶、依托泊苷、奥沙利铂也具有不同程度的耐药。

3 讨论

目前已有大量的实验^[4-5]致力于对顺铂耐药性的研究,其中 DNA 的损伤修复作用引起广泛关注,

表 1 不同药物对 SGC-7901/DDP 的 $IC_{50}(\mu g/ml \dot{x} \pm s)$

项目	SGC7901/DDP	SGC7901	耐药倍数
顺铂	$12.54 \pm 0.00^*$	0.27 ± 0.02	62.7
表阿霉素	$2.37 \pm 0.76^*$	1.68 ± 0.42	1.4
5-氟尿嘧啶	$7.92 \pm 0.09^*$	0.95 ± 0.14	8.0
奥沙利铂	$619.91 \pm 1.02^*$	509.30 ± 0.65	1.2
依托泊苷	$25.89 \pm 0.56^*$	10.37 ± 0.37	2.5
多西紫杉醇	$12.17 \pm 0.08^*$	5.82 ± 0.06	2.1

与 SGC-7901 比较: * P < 0.05

核苷酸切除修复(nucleotide excision repair ,NER)是DNA 修复的重要途径 核苷酸切除修复交叉互补基因 1 (excision repair cross-complementing genel ,ERCC1)蛋白是顺铂诱导 NER 中的关键酶 ,ERCC1 是可以识别 DNA 损伤和断开链间交联的功能 ,研究^[6]表明 ,ERCC1 mRNA 和蛋白的过表达使 DNA 修复能力的增强与临床胃癌患者顺铂化疗疗效呈负相关性。然而 ,目前对 NER 能力的检测多用于临床胃癌组织 ,无法反映肿瘤的生物学行为发生变化所导致的 NER 的变化 ,有学者提出外周血淋巴系统与肿瘤细胞携带有同源基因 ,均具有相同的 NER 系统^[7]。

本研究以人胃腺癌 SGC-7901 及其顺铂耐药株 SGC-7901/DDP 作为研究对象 "用 SCGE 的方法检测 在人胃腺癌 SGC-1901 细胞株和其顺铂耐药株 SGC-7901/DDP的 DNA 修复能力,结果显示人胃腺癌 SGC-7901/DDP 较其亲本细胞的 DNA 修复能力强; 此结果表明肿瘤细胞的 DNA 的修复能力与对顺铂 的敏感性呈负相关,与临床研究[8]结果一致。同时 本研究在表明人胃腺癌 SGC-7901 顺铂耐药后其 DNA 修复能力增强的基础上,用 MTT 的方法检测 SGC-7901 顺铂耐药株对其他化疗药物的敏感性是 否发生变化,结果显示 SGC-7901/DDP 对顺铂耐药 的同时对表阿霉素、5氟尿嘧啶、依托泊苷等也具有 不同程度的耐药,可能由于表阿霉素、5-氟尿嘧啶、 奥沙利铂、多西紫杉醇均通过与 DNA 作用而发挥细 胞毒性,由于胃癌顺铂耐药细胞株的 DNA 修复能力 增强,一定程度抑制其发挥细胞毒性作用,并且有研 究[9-11]表明,肿瘤细胞内顺铂积累的减少,是肿瘤 细胞产生耐药的重要原因,多药耐药基因1是编码 P糖蛋白和多药耐药相关蛋白(multi-drug resistance-associated protein MRP) 的基因 、P 糖蛋白是一 种跨膜蛋白,其通过 ATP 供能,将药物泵出细胞; MRP 也是一种能量依赖的运输蛋白 其主要是识别 与谷胱甘肽形成 MRP-1-ATP ,自动把药物从细胞内 转移到细胞外 从而让细胞内药物浓度降低 药物抵 制肿瘤的影响削弱甚至消失,使细胞获得耐药性。

本研究通过细胞划痕实验显示 SGC-7901/DDP 的迁移能力较正常的胃癌细胞株 SGC-7901 减弱,可能是顺铂进入细胞后形成稳定的 Pt-DNA 加合物,并且顺铂与金属硫蛋白的稳定结合使细胞黏附稳定、不易软化、较正常细胞株不易转移^[12]。

参考文献

- [1] Guerrero-Santoro J ,Levine A S ,Rapi-Otri V. Co-localization of DNA repair proteins with UV-induced DNA damage in locally irradiated cells [J]. Methods Mol Biol 2011 682(2):149-61.
- [2] Liao W ,McNutt M A ,Zhu W G. The comet assay: a sensitive method for detecting DNA damage in individual cells [J]. Methods 2009 48(1):46-53.
- [3] Chen R X ,Xia Y H ,Xue T C ,et al. Suppression of microRNA-96 expression inhibits the invasion of hepatocellular carcinoma cells
 [J]. Mol Med Rep 2012 5(3):800-4.
- [4] Lubin J , Markowska A , Knapp P. Factors affecting response of chemotherapy in women with ovarian cancer [J]. Eur J Gynaecol Oncol 2012 33(6):644-7.
- [5] Alekseev S Ayadi M Brino L et al. A small molecule screen identifies an inhibitor of DNA repair inducing the degradation of TFIIH

- and the chemosensitization of tumor cells to platinum [J]. Chem Biol 2014 21(3):398 -407.
- [6] 张逸寅 顺康生 杨 枫. 胃癌组织与外周血淋巴细胞 ERCC1 表达的相关性研究[J]. 临床肿瘤学杂志 2013 ,18(5):398 –402.
- [7] Yang M ,Kim W H ,Choi Y ,et al. Effects of ERCC1 expression in peripheral blood on the risk of head and neck cancer [J]. Eur J Cancer Prev 2006 ,15(3): 269 - 73.
- [8] 张逸寅 顺康生. DNA 修复率预测晚期胃癌含铂化疗方案疗效的研究[J]. 临床肿瘤学 2013, 18(9):790-4.
- [9] 郗照勇 刘扬中. 顺铂耐药的分子机制[J]. 中国科学 2014 44 (4):410-22.
- [10] Yang M, Shan X, Zhou X et al. MiR-1271 regulates cisplatin resistance of human gastric cancer cell lines by targeting IGF1R, IRS1, mTOR, and BCL2 [J]. Anti Cancer Agents Med Chem, 2014,14(6):884-91.
- [11] Liu Y ,Zhu Z ,Cai H ,et al. SKI-II reverses the chemoresistance of SGC7901/DDP gastric cancer cells [J]. Oncol Lett 2014 &(1): 367 - 73.
- [12] Liu J ,Mil A ,Aguor E N ,et al. MiR 155 inhibits cell migration of human cardiomyocyte progenitor cells (hCMPCs) via targeting of MMP-16[J]. J Cell Mol Med ,2012 ,16(10):2379 – 86.

Characteristics of cisplatin resistance in human gastric cancer cell line SGC-7901

Huang Nana Zhang Yiyin ,Gu Kangsheng

(Dept of Oncology The First Affiliated Hospital of Anhui Medical University Hefei 230022)

Abstract Objective To investigate the characteristics of cisplatin resistance in human gastric cancer cell line SGC-7901. Methods Single cell gel electrophoresis (SCGE) was used to measure the level of DNA damage and repair in gastric cancer cell line SGC-7901 and gastric cancer cisplatin resistance cell line SGC-7901/DDP by observing the tail length. Morphological changes of SGC-7901 and SGC-7901/DDP were recorded to evalutate the differences between the two lines. The degree of migration of SGC-7901/DDP and SGC-7901 measured by cell wound scratch assay was used to estimate the ability of invasion. MTT assay was performed to determine the drug sensitivity, IC₅₀ values and cross-resistance of SGC-7901/DDP treated with 5-FU, VP-16, ADM, TAX and LOHP separately. Results The level of DNA damage and repair in SGC-7901/DDP was higher than that in SGC-7901 according to the tail length of SCGE tests suggesting the relationship between cisplatin resistance and the abiity of DNA damage and repair. There was a much smaller volume in SGC-7901/DDP compared with SGC-7901 and clone aggregation always appeared in SGC-7901/DDP. Cell wound scratch assay showed that the migration of SGC-7901/ DDP was weaker than that of SGC-7901. MTT showed the significant increase of IC_{so} and cross resitance in SGC-7901/DDP compared with SGC-7901 treated with 5-FU , VP-16 , ADM , TAX and LOHP simultaneously. Conclu-The ability of DNA damage and repair in gastric cancer cisplatin resistance cell line SGC-7901 is enhanced significantly. The SGC-7901/DDP shows a notable promotion on multidrug resistance in vivo, and the migration of SGC-7901/DDP is weaker than that of SGC-7901.

Key words gastric cancer; multidrug resistance; cisplatin resistance; SCGE