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The surface of Wiltse space was covered by the erector spinae aponeurosis which was constituted by the tendons of
longissimus pars thoracis. After the potential space was separated bluntly between the thoracic semispinalis tendons
and the first medial tendon of longissimus (83% 15 sides) or between the first and the second tendon of longissi—
mus additionally ( 17% 3 sides) . The Wiltse space in all the thoracolumbar spine was exposed clearly. Through
the Wiltse space the multifidus T11 —T12 transverse process Ll — L2 articular process were exposed. After the
accurate entry points of pedicle screw were shown the pedicle screw fixation was simulated and the pedicle screws
were inserted into pedicle and vertebral body successfully. The location of the pedicle screws were assured by posto—
peration CT and the multifidus remained intact. Conclusion In-depth understanding of the anatomy of Wiltse
space in the thoracolumbar spine will contribute to the improvement of the minimally invasive pedicle screw fixation
in this area.

Key words thoracolumbar spine; paraspinal intermuscular space; pedicle screw fixation; anatomy
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Experimental study on surface microscopic morphology and

biological mineralization of tissue engineering bone
Ning Yinkuan Li Qiang Cai Weiliang et al
( Dept of Limb Trauma Surgery The Affiliated Hospital of Guilin Medical University Guilin  541001)

Abstract Objective Green fluorescent protein( GFP) labeling scanning electron microscope and energy disper—
sive spectrometer ( SEM /EDS) were applied to observe surface microstructure and biological mineralization of tissue
engineering bone for the purpose of evaluating the decalcified bone matrix ( DBM) scaffold materials of biological
properties in tissue engineering bone. Methods The rabbit bone-marrow mesenchymal stem cells ( BMSCs) were
marked by Ad-GFP. Real-time growth of the cells was observed by an inverted fluorescence microscope after the os—
teoinductive culture on to DBM and surface microstructure and biological mineralization of tissue engineering bone
were observed by SEM/EDS. Results The cells on surface of DBM had a good adhesion overlap growth as ob—
served by an inverted fluorescence microscope and a higher level of transient expression of GFP was confirmed af—
ter 14 days in vitro culture. SEM image showed that DBM had a porous structure with pore diameter ranging from
300 to 600 wm and a porosity rate was around 90% . The tissue engineering bone showed that cells grew adherently
on the surface of DBM matrix secretion was strong and the DBM was covered by rough biological mineralization.
X-ray photoelectron spectroscopy showed that the surface of rough biological mineralization consisted of Calcium
Phosphorus sediment and its Calcium and Phosphorus ratio ( Ca/P) was 1.46. Conclusion Tissue engineering
bone constructed by DBM scaffold materials in vitro has excellent biological properties and combined application of
GFP labeling SEM and X-ray photoelectron spectroscopy is a feasible method for evaluating DBM scaffold material
in tissue engineering bone.
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