◇药学研究◇

白藜芦醇诱导人肺腺癌 A549 细胞细胞凋亡 及其与 p38 MAPK 信号途径的联系

华丛书1,陈 海1,张朝东1,赵 欢2,陈晓宇2

摘要 目的 探讨白藜芦醇(Res)诱导人肺癌 A549 细胞株 凋亡及其与 p38 MARK 信号通路的联系。方法 CCK-8 法 检测 Res 对人肺癌 A549 细胞增殖抑制作用,Annexin V-FITC/PI 双染法检测 Res 对肺癌 A549 细胞凋亡率,Western blot 法检测 Res 对人肺癌 A549 细胞 Caspase 剪切片断 (Caspase-1、Caspase-3) 表达的影响,及其对丝裂原激活蛋白 激酶(MAPK) 通路蛋白(p38、p-p38) 表达的影响。结果 Res 对人肺癌 A549 细胞株生长呈浓度依赖性的抑制作用,48 h的 Res 作用肺癌 A549 的半数抑制浓度(IC_{50}) 值为($I0.6 \pm$

1. 2) μmol/L。用 10 μmol/L Res 处理 A549 细胞 24、36、48 h,细胞凋亡率较对照组明显增加(P < 0.01)。 Res 作用于 A549 细胞 48 h 后, Western blot 法检测显示 Caspase-1、Caspase-3 蛋白出现断裂片断,p38、p-p38 表达亦增高。结论 Res 明显诱导人肺癌 A549 细胞毒作用,诱导 A549 细胞凋

关键词 细胞凋亡; 信号通路; 白藜芦醇; 肺癌 A549 细胞中图分类号 R 737.3

亡,其机制与激活 p-p38 MAPK 途径有关。

文献标志码 A 文章编号 1000-1492(2015)10-1447-04

2015 - 06 - 15 接收

基金项目: 国家自然科学基金项目(编号: 81373421)

作者单位: 1安徽省胸科医院胸外科,合肥 230022

²安徽医科大学组织胚胎学教研室,合肥 230032

作者简介: 华丛书, 男, 硕士;

陈晓宇,男,博士,教授,硕士生导师,责任作者,E-mail: chenxy@ahmu.edu.cn

天然的多酚类化合物白藜芦醇(resveratrol, Res)广泛存在于葡萄、虎杖、花生等植物体内。近年来,Res 的药理作用得到充分研究,Res 具有广泛的生物学和药理学活性,如抗氧化、抗炎、免疫调节、抗肿瘤和神经保护等效应^[1]。研究^[2]证实,丝裂原激活蛋白激酶(mitogen-actived protein kinase,

Establishment of mouse model of acute liver injury induced by cadmium chloride

Wu Yongqin¹, Guan Cunjie¹, Liu hongmao², et al

(The First School of Clinical, School of Public Health, Anhui Medical University, Hefei 230032)

Abstract *Objective* To establish the mouse model of acute liver damage induced cadmium chloride and elucidate the mechanism of Cd-induced-liver injury. *Methods* The adult male mice were intraperitoneally (i. p.) injected with a single dose of CdCl₂(4 mg/kg) and killed at different time(6, 12, 18, 24 h) after Cd treatment, or administrated with different doses of CdCl₂(1, 2 or 4 mg/kg) i. p. and sacrificed at 18 h after Cd exposure. The control group received only equal volumes of normal saline. Histopathology of liver tissues, serum of ALT, AST and MDA, and MDA, NO, GSH, GSH-PX of liver tissues were observed. *Results* 18 hours after the treatment of using 4 mg/kg dosage, i. p, liver tissues appeared visible pathological changes with severe ballooning degeneration and necrosis, the levels of ALT and AST in serum were obviously higher. In addition, at 18 h after Cd treatment, the levels of MDA and NO in liver tissues significantly increased in the cadmium group, however, the level of GSH and the activity of GSH-PX in liver tissues significantly decreased. *Conclusion* A mouse model of acute liver injury is successfully established by intraperitoneal injection with 4 mg/kg CdCl₂ at 18 hours after Cd treatment. The mechanism might be associated with the increase of MDA and NO and the decrease of the level of GSH and the activity of GSH-PX in liver tissues.

Key words cadmium chloride; acute liver injury; animal model; MDA; NO; GSH

MAPKs) 信号转导途径是多种细胞的生存、凋亡信号传导,p38 通路通常介导细胞的凋亡。有关 Res 对肺癌的作用报道较少,该研究拟探讨 Res 对人肺癌 A549 细胞增殖的影响,Res 能否诱导 A549 细胞发生凋亡,及其与激活 p38 MAPK 信号转导通路之间的关系。

1 材料与方法

1.1 材料 人肺癌细胞株 A549 购自上海中科院 药物研究所,传代培养; Res(纯度≥99.8%) 购自美国 Sigma 公司,溶解于 DMSO; RPMI 1640 培养液、胎牛血清购自美国 Gibco 公司; CCK-8 试剂盒购自日本 DOJINDO 公司; CO₂ 培养箱购自日本 Sanyo 公司; 倒置显微镜购自日本 Olympus 公司; 酶标仪 680型购自美国 Bio-Rad 公司; Annexin V - FITC/PI 凋亡检测试剂盒购自上海晶美生物公司; p38、磷酸化(p-p38)、ECL 化学发光剂购自美国 Cell Signal 公司; 兔多克隆抗体 Caspase 剪切片断(Caspase-1、Caspase-3)、β-actin 及抗兔二抗购自美国 Santa Cruz公司; BCA 蛋白定量试剂盒购自美国 Pierce 公司; 细胞裂解液购自美国 Upstate 生物技术公司; 其他试剂为国产分析纯。

1.2 方法

- 1.2.1 细胞培养和传代 人肺癌 A549 细胞用 RP-MI 1640 培养液(含 10% 的胎牛血清) 置于 37 $^{\circ}$ 、 5% CO₂ 培养箱培养,每 3 d 更换 RPMI 1640 培养 1 次。当 A549 细胞生长至 80% 融合时,0. 25% 胰蛋白酶消化、传代细胞。
- 1.2.2 Annexin V-FITC/PI 双染细胞法检测 在检测 Res 的 IC₅₀后,用 10 μmol/L Res 处理 A549 细胞 24、36、48 h,收集不同时间点 Res 处理 A549 细胞,

- 胰酶消化,PBS 洗涤 2 次,每次 10 min,3 000 r/min 离心 5 min; 1 ×结合缓冲液调整细胞密度为 1 × 10⁶ / ml。取单细胞悬液 0.5 ml,加入 Annexin V-FITC 1.25 μl,室温 18 ~ 24 ℃、避光、静置 15 min 后离心; 吸弃上层液体,加 1 × 结合缓冲液 0.5 ml 重悬细胞,加入 PI(10 mg/L) 10 μl 染色,将标本置于冰块中、避光。1 h 内在流式细胞仪上测定细胞凋亡率。
- 1.2.3 Western blot 法检测 取处于对数生长期的 人肺癌 A549 细胞, RPMI 1640 稀释至 3×10⁵个/ml, 25 ml 小培养瓶中接种培养,不同浓度 Res(1、10、 30 μmol/L) 的药物作用 48 h 后, 收集 A549 细胞, PBS 洗涤 2 次,每次 10 min,加入 100 µl 细胞裂解 液,15 000 r/min离心 10 min,BCA 蛋白定量试剂盒 定量蛋白,将蛋白浓度调整一致。取裂解蛋白40 μg,加入3×SDS 上样缓冲液,95 ℃变性 10 min。配 制 12% 的 SDS-PAGE 分离胶,凝胶电泳后,电转移 至硝酸纤维膜上,5%脱脂牛奶封闭,依次加入相应 的一抗(兔多克隆抗体 Caspase-1、Caspase-3、p38、pp38) 4 ℃孵育过夜,以 GAPDH 作为内参。次日,pH = 7.4 的 TBST 缓冲液 (10 mmol/L Tris-Hcl, 150 mmol/L NaCl, 0.1% Tween 20) 洗涤 3 次,每次 10 min,加入相应二抗,37 ℃ 孵育 1 h,TBST 缓冲液洗 膜 3 次,在室温下孵育 2 h,洗涤 3 次,每次 10 min, 加入 ECL 检测目的条带的表达,放入暗盒中压片,2 ~5 min 后显影、定影。
- **1.3 统计学处理** 应用 SPSS 16.0 软件进行分析,数据以 $\bar{x} \pm s$ 表示,多组均数的比较采用方差分析。

2 结果

- 2.1 Res 对肺癌 A549 细胞体外增殖活性的抑制作用 Res(1.5.10.20 和 50 μ mol/L) 对 A549 肿瘤细胞具有明显的增殖抑制作用(F=8.641, P=0.027), 48 h, 对 A549 细胞 IC₅₀时 Res 浓度值为(10.6 ± 1.2) μ mol/L,95% 可信区间为 56.2 ~ 63.6。与溶剂对照组比较,Res 能明显抑制 A549 细胞的增殖,且呈现明显的浓度 效应关系。见图 1。
- 2.1.1 流式细胞术检测细胞凋亡率 本研究采用 10 μ mol/L Res 处理 A549 细胞,24、36、48 h,细胞凋亡率分别为(15.2 ± 2.7)%、(22.8 ± 3.6)%、(29.6 ± 3.7)%,溶剂对照组细胞凋亡率仅为(2.3 ± 1.2)%,表明细胞凋亡率显著增加(F = 13.476,P = 0.006)。见图 2。

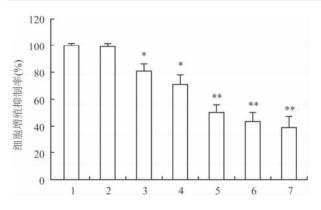


图 1 Res 作用 48 h 后 A549 细胞增殖率的变化

1: 空白对照组; 2: 溶剂对照组; 3: Res 1 μmol/L; 4: Res 5 μmol/L; 5: Res 10 μmol/L; 6: Res 20 μmol/L; 7: Res 50 μmol/L; 与溶剂对照组比较: *P<0.05, **P<0.01

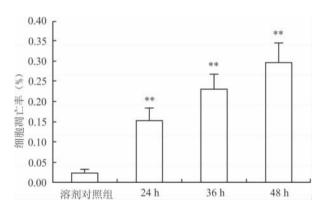


图 2 Res 处理 A549 细胞 24、36、48 h 细胞凋亡率 与溶剂对照组比较: ** P < 0.01

2.1.2 Res 对肺癌 A549 细胞中 Caspase-I、Caspase-3 蛋白剪切的影响 完整的 Caspase 复合物 (Caspase-I、Caspase-3) 无活性,剪切后其被激活。用不同浓度 Res(1、10、30 µmol/L) 作用于肺癌 A549细胞 48 h后,Western blot 法检测显示,随着 Res 浓度的升高,Caspase-I、Caspase-3 断裂片段升高明显。而未用 Res 处理的溶剂对照组无断裂片段表达(图3)。结果显示,Caspase-I 和 Caspase-3 已被快速活化,从而诱导肺癌 A549 细胞凋亡。

2.2 Res 诱导肺癌 A549 细胞凋亡的 p38 MAPK 通路的的影响 Western blot 法检测 $10~\mu$ mol/L Res 处理肺癌 A549 细胞 24.36.48~h,结果表明,24~h后 p-p38 MAPK 显著增加,且随着时间的延长,p-p38 MAPK 增加更为明显,总的 p38 MAPK 的变化不明显(图 4)。可见,p-p38 是其活性形式,这表明 Res 激活了 p38 信号转导通路。

3 讨论

Res含有多酚结构,具有较强的抗炎、抗氧化和

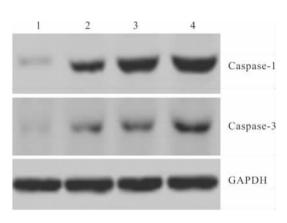


图 3 Western blot 法检测不同浓度 Res 作用后 Caspase-1、Caspase-3 断裂片段表达

1 溶剂对照组; 2: Res 1 μmol/L; 3: Res 10 μmol/L; 4: Res 30 μmol/L

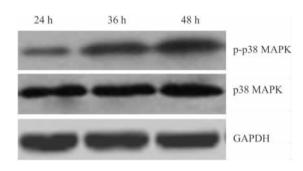


图 4 Western blot 法检测 Res 处理肺癌 A549 细胞 24、36、48 h p38 蛋白表达

抗自由基、调节机体免疫力作用^[1]。研究^[3]显示, Res 对肿瘤的发生、发展具有干扰和保护作用,Res 能够防止细胞癌变、抑制肿瘤细胞的扩散。本研究 结果表明,与溶剂对照组比较,Res 对肺癌 A549 细 胞具有明显的增殖抑制作用,随着 Res 剂量的升高, 其抑制作用增强,呈现明显的浓度-效应关系。

本研究表明,Res 对肺癌 A549 细胞具有很强的增殖抑制作用。为证实此作用是否与促进肺癌 A549 细胞凋亡有关,本研究应用 Res(10 µmol/L)处理 A549 细胞,流式细胞术显示,Res 作用 24、36、48 h,肺癌 A549 细胞凋亡率明显高于溶剂对照组,具有一定的时间 - 效应依赖关系。故 Res 有抑制肺癌 A549 细胞增殖的作用,促进肺癌 A549 细胞凋亡。

研究^[4]表明,Res 通过影响凋亡相关基因表达影响诱导肿瘤细胞的凋亡,Res 可通过 Fas-FasL 途径诱导人直肠癌细胞株发生凋亡现象。Caspase-1和 Caspase-3在细胞凋亡过程中起着关键作用。Caspase-1位于细胞凋亡途径的上游,其发生剪切后活化,活化的 Caspase-1作为始动 Caspase 复合物,

进一步诱导效应 Caspase-3 的活化,导致 Caspase-3 也发生断裂,降解重要底物,使得蛋白酶级联切割放大,使细胞最终走向凋亡^[5]。本研究中,肺癌 A549 细胞中的 Caspase-1 和 Caspase-3 蛋白在加入 Res 处理后均发生断裂,且呈浓度依赖关系。故 Res 能诱导 A549 细胞发生凋亡,其机制与 Caspase 复合物的活化和级联放大效应相关。

为探讨 Res 诱发肺癌 A549 细胞凋亡的可能机制,本研究检测了 p38 MAPK 信号通路有关蛋白的表达。p38 MAPK 含有丝氨酸/苏氨酸残基的蛋白激酶,广泛分布于细胞质与细胞核中,p38 MAPK 激活后可调节细胞增殖、凋亡等活动^[6-7]。p38 定位于静止细胞的胞质中,激活后,p38 移位至细胞核,激活一系列转录因子,引起级联反应。如 p38 磷酸化激活转录因子,参与转录因子复合物 AP-1 的构成,进一步调节肿瘤坏死因子-α、p53、原癌基因等基因的表达,引起细胞凋亡^[8]。本研究显示 Res 明显激活 p38 途径,调控肺癌 A549 细胞凋亡,但其机制仍需进一步研究。

参考文献

[1] Chen X, Lu J, An M, et al Anti-inflammatory effect of resveratrol on adjuvant arthritis rats with abnormal immunological function *via* the reduction of cyclooxygenase-2 and prostaglandin E2 [J]. Mol

- Med Rep, 2014, 9(6): 2592 8.
- [2] Oh C C, Nguy M Q, Schwenke D C, et al. p38α mitogen-activated kinase mediates cardiomyocyte apoptosis induced by palmitate [J]. Biochem Biophys Res Commun, 2014, 450(1):628 33.
- [3] Soufi F G, Mohammad-Nejad D, Ahmadieh H. Resveratrol improves diabetic retinopathy possibly through oxidative stress-nuclear factor κB-apoptosis pathway [J]. Pharmacol Rep., 2012, 64 (6):1505-14.
- [4] Delmas D, Rébé C, Lacour S, et al. Resveratrol-induced apoptosis is associated with Fas redistribution in the rafts and the formation of a death-inducing signaling complex in colon cancer cells
 [J]. J Biol Chem, 2003, 278 (42): 41482 90.
- [5] Edebali N, Tekin I Ö, Açkgöz B, et al. Apoptosis and necrosis in the circumventricular organs after experimental subarachnoid hemorrhage as detected with annexin V and caspase-3 immunostaining [J]. Neurol Res, 2014, 36(12):1114-20.
- [6] Chen C Y, Chen Y K, Wang J J, et al. DC-81-enediyne induces apoptosis of human melanoma A375 cells: involvement of the ROS, p38 MAPK, and AP-1 signaling pathways [J]. Cell Biol Toxicol, 2013, 29(2):85-99.
- [7] 张晶晶,吴永贵,张 培,等. 白芍总苷对糖尿病大鼠肾组织 p38 MAPK 磷酸化与 NF-xB 表达的影响 [J]. 安徽医科大学学报,2008,43(5):534-7.
- [8] Kim J H, Jung S H, Yang Y I, et al. Artemisia leaf extract induces apoptosis in human endometriotic cells through regulation of the p38 and NF-kB pathways [J]. J Ethnopharmacol, 2013,145 (3):767-75.

Apoptosis induced by resveratrol in human lung cancer A549 cells and relation with p38 MAPK signal pathway

Hua Congshu, Chen Hai, Zhang Chaodong, et al (Dept of Thoracic Surgery, Anhui Province Chest Hospital, Hefei 230022)

Abstract *Objective* To study resveratrol(Res) -induced apoptosis in human lung cancer A549 cells and relation with mitogen-actived protein kinase(MAPK) signal pathway. *Methods* Cytotoxicity was analyzed by CCK-8 method. Apoptotic cells were stained with Annexin V – FITC/ PI and were detected by flow cytometry. Protein expressions of cleavage of the Caspases (Caspase-1, Caspase-3) and MAPK(p38, p-p38) were detected by Western blot analysis. *Results* Res inhibited proliferation of A549 cells with IC₅₀ value of (10. 6 ± 1. 2) μmol/L and induced cell apoptosis. Compared with the control group, apoptotic ratio increased rapidly within 24, 36, 48 h after Res (10 μmol/L) treatment. Cleavage of the Caspase-1, Caspase-3 was observed in A549 cells treated with different doses of Res for 48 h. p38, p-p38 were activated. *Conclusion* Res inhibits proliferation and induces apoptosis of A549 cells. Activation of p38 pathways may be one of its mechanisms.

Key words apoptosis; signal pathway; resveratrol; lung cancer A549 cells