sARMS-PCR 检测非小细胞肺癌肿瘤组织中 KRAS、BRAF 基因突变研究

邵 璐』侯丹阳』冷再君』徐修才。伍 权。操乐杰』

摘要 目的 针对非小细胞肺癌(NSCLC)患者组织标本鼠类肉瘤病毒癌基因同源基因(KRAS)和鼠类肉瘤滤过性毒菌致癌同源体 BI(BRAF)驱动基因突变使用特异引物双扩增实时蝎形探针扩增阻滞突变系统(sARMS-PCR)检测的可行性;了解 KRAS和 BRAF基因突变患者临床病理特征,为NSCLC患者个体化治疗提供理论依据。方法 收集89例NSCLC患者肿瘤组织甲醛固定石蜡包埋标本(FFPE),采用FFPE样品DNA分离试剂盒(离心柱型)提取DNA,使用sARMS-PCR同时进行KRAS及BRAF基因突变检测。结果

2015 - 07 - 15 接收

基金项目: 安徽省卫生厅医学科研课题计划(编号: 13ZC001);安徽 省科技攻关计划项目(编号: 1301042216)

作者单位: 安徽医科大学附属省立医院¹ 呼吸内科、² 中心实验室 ,合 肥 230001

作者简介: 邵 璐 女 硕士研究生;

操乐杰 男 ,教授 ,主任医师 ,硕士生导师 ,责任作者 ,E-mail: sycaolejie@ 163. com

① KRAS 基因突变 21 例(21/89);其中 KRAS 基因 7 种热点突变中 检出 6 种热点突变 均位于第 12、13 位密码子 几例同时检出存在 G12D 及 G12V 位点突变 几例同时检出存在 G12C 及 G12V 位点突变;未发现 G12S 突变型;② BRAF 基因突变 1 例(1/89) 突变位点为 V600E ,为女性 黏液腺癌;③ 未见 KRAS 和 BRAF 基因同时突变现象。结论 临床使用 sARMS-PCR 技术检测 NSCLC 患者 KRAS 和 BRAF 基因突变有较强敏感性,且石蜡组织标本取材方便,可以作为两种基因的临床检测方法; KRAS 和 BRAF 基因突变与年龄、吸烟史、病理分型等均无明显相关性,KRAS 基因突变与性别相关,男性高于女性; KRAS 与 BRAF 基因是独立存在的。关键词 非小细胞肺癌;鼠类肉瘤病毒癌基因同源基因;鼠类肉瘤滤过性毒菌致癌同源体 B1;特异引物双扩增即时PCR 技术

中图分类号 R 734.2

文献标志码 A 文章编号 1000 - 1492(2015)11 - 1669 - 05

kines after percutaneous coronary intervention (PCI) treatment in acute myocardial infarction (AMI) patients. Methods 118 incipient AMI patients with successful underwent PCI (Defined as treatment group, blood samples were collected from pre-operation, 12 h after operation, 24 h after operation, 48 h after operation and 90 d postoperative follow-up period) and 52 AMI patients with diagnostic coronary angiography (CAG) (Defined as control group, blood samples were collected prior to CAG, 12 h after CAG, 24 h after CAG, 48 h after CAG and 90 d follow-up period) were enrolled in this study. Serum levels of IL-6, IL-18, hs-CRP, TNF-α and MMP-9 were detected in all the subjects by enzyme-linked immune sorbent assay(ELISA) and major adverse cardiac events(MACE) occurrence rate was analyzed in 90 days followed-up cases. **Results** No significant differences in baseline levels of IL-6, IL-18, hs-CRP, TNF- α and MMP-9 were found in the two study groups (P > 0.05). No significant differences of levels of IL-6 ,IL-18 ,hs-CRP ,TNF- α and MMP-9 were found after CAG in control group (P > 0.05). The serum levels of IL-6 ,IL-18 ,hs-CRP and TNF- α after PCI were significantly increased (P < 0.01) while no significant differences were found in level of MMP-9 (P > 0.05) in PCI group. There were significant differences of levels of IL-6, IL-48, hs-CRP and TNF-α between MACE group and without MACE group after PCI. The multivariable logistic analysis showed that IL-6, IL-18, hs-CRP and TNF-α were risk factors of MACE after 90 days follow-up. Conclusion The concentrations of serum IL-6 ,IL-18 ,hs-CRP and TNF-α are significantly increased in AMI patients treated with PCI. PCI operation may induce inflammatory reaction. High serum levels of peripheral inflammatory cytokines IL-6, IL-18, hs-CRP and TNF-α have an important role in major adverse cardiac events (MACE) and short-term prognosis in the first AMI patients treated with successful primary PCI.

Key words acute myocardial infarction; interleukin-6; interleukin-18; high-sensitivity C-reactive protein; tumor necrosis factor-alpha; percutaneous coronary intervention

针对驱动基因的靶向治疗药物逐渐成为目前肺 癌个体化治疗研究的热点 ,主要集中在包括表皮生 长因子受体(epidermal growth factor receptor EGFR) 在内的数个信号转导途径,尤其是表皮生长因子受 体络氨酸激酶抑制剂(epidermal growth factor receptor-tyrosine kinase Inhibitors EGFR-TKI) 药物的研发 及临床应用,延长了非小细胞肺癌(non-small cell lung cancer NSCLC) 患者的生存期 EGFR 基因突变 与 EGFR-TKI 的相关性已经得到了很好的验 证[1-4]。但临床观察显示,虽然有部分患者存在 EGFR 基因突变 但对 EGFR-TKI 的治疗效果变异很 大,可能与 RAS-RAF-丝裂原激活蛋白激酶的激酶 (mitogen-activated protein kinase kinase ,MEK) -细胞 外信号调节激酶(extracellular-signal-regulated kinase ERK) 信号传导系统的下游信号因子鼠类肉瘤 病毒癌基因同源基因(kirsten rat sarcoma viral oncogene homolog ,KRAS) 或鼠类肉瘤滤过性毒菌致癌同 源体 B1 (V-rafmurine sarcoma viral oncogene homologB1 ,BRAF) 基因突变部分相关[5] ,因此给患者 行 TKI 治疗前仅仅检测 EGFR 是否突变可能不够全 面 在行 EGFR 基因突变检测同时需行 KRAS 和 BRAF 突变检测有利于做出更全面的治疗决策。目 前 KRAS、BRAF 基因检测主要有直接测序法、焦磷 酸测序法、高分辨率熔解曲线分析法(high resolution melting ,HRM) 等 ,但大多存在敏感性低、易污染等 问题 而特异引物双扩增实时蝎形探针扩增阻滞突 变系统(amplitieafion refractory mutation system, ARMS) 因其高敏感性、高特异性等优势受到临床广 泛欢迎。该研究旨在对 KRAS、BRAF 基因突变的检 测确立临床检验方法及两种基因与临床病理特征关 系进行探讨,为肺癌个体化治疗提供实验依据。

1 材料与方法

1.1 标本来源 选取安徽医科大学附属省立医院 2013 年 1 月~12 月 NSCLC 组织学石蜡包埋组织标本 89 例 其中经胸外科手术切除标本 83 例 ,锁骨上转移性淋巴结活检 3 例 ,肺穿刺活检 1 例 恶性胸腔积液 2 例。标本经病理学确诊为 NSCLC ,均为甲醛固定石蜡包埋标本。标本采集前均未接受任何抗肿瘤治疗 ,无其他原发肿瘤病史。患者临床资料主要包括性别、年龄、吸烟史、肿瘤类型、TNM 分期等; 分期依据 2011 年由国际肺癌研究学会(IASLC)、美国胸科学会(ATS)及欧洲呼吸学会(ERS)制定的肺癌的国际多学科分类标准。

- 1.2 主要试剂 甲醛固定石蜡包埋标本(formalinfixed paraffin-embedded,FFPE)样品 DNA 分离试剂 盒(离心柱型)、人类 KRAS 基因 7 种突变检测试剂 盒(荧光实时 PCR)、人类 BRAF 基因 V600E 突变检测试剂盒(荧光实时 PCR)均购自厦门艾德生物科技有限公司。
- 1.3 FFPE 标本处理及 DNA 提取 所有石蜡组织标本均经病理学确诊,且肿瘤细胞含量 $\geq 10\%$,佩戴一次性手套,使用徕卡手动切片机连续切取每份FFPE 标本,切片厚度为 $5~\mu m$,共 $8~10~\mathrm{K}$,放置离心管中备用,更换 FFPE 标本时需用 75% 乙醇溶液擦拭切片机,避免切片机上残余的蜡块交叉污染。所有标本应用 FFPE 样品 DNA 分类试剂盒(离心柱型) 提取 DNA ,具体操作步骤按说明书进行。提取的 DNA 均使用 SMA4000 超微量紫外分光度计(AmoyDx 北京仪器有限公司) 行浓度测定,DNA 的260 nm 和280 nm 处光密度(optical delnsity,OD) 比值 OD_{260}/OD_{280} 均在 1.8~2.0,并放置 $-20~\mathrm{C}$ 环境保存。
- 1.4 KRAS、BRAF 基因检测 所提取的 DNA 分别根据人类 KRAS 基因 7 种突变检测试剂盒(荧光实时 PCR) ,人类 BRAF 基因 V600E 突变检测试剂盒(荧光实时 PCR) 所附说明书的步骤操作并运用Applied Biosystems 7500 实时 PCR 及操作系统(美国应用生物系统公司) 行 KRAS、BRAF 联合检测。见图 1。
- 1.5 统计学处理 运用 SPSS 16.0 软件分析数据,基因突变状态与临床病理学特征采用 χ^2 检验。

2 结果

- 2.1 临床病理学资料特点 本研究 89 例 NSCLC 患者 其中男 54 例 ,女 35 例 ,男女比例约为 1.5:1; 年龄 37~82 岁 ,中位年龄 60 岁 ,平均水平和变异程 度指标 61 岁 ,<61 岁 49 例 ,≥61 岁 40 例; 吸烟组 39 例 非吸烟组 50 例; 腺癌 88 例 ,非腺癌 1 例; I~ II 期 73 例 ,III~IV 期 16 例。
- 2.2 KRAS 及 BRAF 基因状态与临床病理特征的相关性 89 例 NSCLC 患者中, KRAS 基因突变率23.6%(21/40),男 17 例,女 4 例,男性和女性突变率分别为31.5%(17/54)和11.4%(4/35),两者之间差异有统计学意义(P<0.05)。吸烟者39 例 检出 KRAS 基因突变 12 例; 非吸烟者50 例,检出 KRAS 基因突变 9 例,突变率分别为30.8%和18.0% 吸烟者高于非吸烟者,但两者之间差异无统

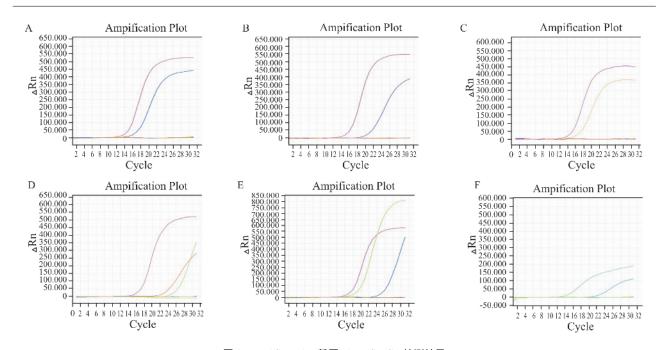


图 1 KRAS、BRAF 基因 sARMS-PCR 检测结果

A、B、C: KRAS 突变型; D: 复合突变 p. G12V 和 p. G12D; E: 复合突变 p. G12V 和 p. G12C; F: BRAF 基因突变型

计学意义。 I ~ II 期与Ⅲ ~ IV 期患者之间突变率差异无统计学意义。 见表 1。 BRAF 基因突变率 2.5%(1/40),与年龄、性别、吸烟史、病理类型、分期差异均无统计学差异。

表 1 KRAS 基因状态与临床病理特征的相关性(n)

	24 ¥b		KR	AS	
项目	总数	野生型	突变型	P 值	χ ² 值
年龄(岁)					
≥61	40	29	11	0.433	0.614
< 61	49	39	10	0. 155	0.011
性别					
男	54	37	17	0.030	4.737
女	35	31	4	0.050	1.757
吸烟史					
吸烟	39	27	12	0.159	1.982
非吸烟	50	41	9	0.157	1.702
病理类型					
腺癌	88	67	21	0.113	_
非腺癌	1	1	0	0.113	
分期					
I ~ II	73	58	15	0.273	1.199
Ⅲ ∼ IV	16	10	6	0.213	1.177

2.3 KRAS 基因突变类型分析 89 例 NSCLC 患者标本行 7 种 KRAS 基因突变类型检测 ,分别为G13D、G12A、G12D、G12C、G12R、G12V、G12S ,其中检出 KRAS 基因突变 21 例 ,均发生在第 12 或 13 号密码子 ,其中 1 例 p. G13D ,6 例 p. G12A ,6 例 p. G12D 5 例 p. G12C ,1 例 p. G12R ,1 例复合突变

为 p. G12V 和 p. G12D ,1 例复合突变为 p. G12V 和 p. G12C ,未检出 p. G12S。见表 2。

表 2 KRAS 基因突变类型分析

突变名称	碱基变化	数目(例)	
G12D	GGT > GAT	6	
G12A	GGT > GCT	6	
G12V	GGT > GTT	0	
G12S	GGT > AGT	0	
G12R	GGT > CGT	1	
G12C	GGT > TGT	5	
G13D	GGC > GAC	1	
G12C 和 G12V	GGT > TGT 和 GGT > GTT	1	
G12D 和 G12V	GGT > GAT 和 GGT > GTT	1	

2.4 KRAS 基因与 BRAF 基因共存情况 89 例 NSCLC 肿瘤标本同步行 KRAS 和 BRAF 基因检测,同一患者未检出 KRAS、BRAF 双突变。

3 讨论

RAS 蛋白又称 P21 蛋白,普遍存在于哺乳动物基因组中,突变的 RAS 蛋白持续与 GTP 结合处于活化状态,引起下游信号分子持续活化,促进肿瘤细胞的增殖、存活和转移。 RAF 蛋白是 EGFR 信号通路中 KRAS 下游重要的信号分子,是 RAS-RAF-MEK-ERK 信号转导通路重要的转导因子,其将信号从KRAS 传导至 MEK1/2,参与调控细胞的生物学事件,如细胞生长、分化和凋亡。在人类癌症中突变的

RAS 基因编码的蛋白质突变发生在 G12、G13 或Q61。1984 年人类首次在肺癌中发现 KRAS 基因突变 注要发生在密码子 12 或 13。

在西方国家中,肺癌的 KRAS 突变率达 15% ~ 30% ,低于亚裔患者^[6~9] 的 20% ~ 30% ,更频发于来自吸烟者的腺癌^[10-11] ,KRAS 突变在非吸烟肺癌患者中并不罕见,约占 15% ,本研究中的 89 例实验标本,运用 ARMS-PCR 测出 KRAS 基因突变率为23.6% ,与文献^[6~9] 报道一致 ,吸烟者突变率为30.8% (12/39) ,非吸烟者突变率为18% (9/50) ,LCINS 突变率虽略高于文献报道,但吸烟者和未吸烟者突变率之间差异无统计学意义,与国外研究^[18] 的 KRAS 基因突变更常见于吸烟者的报道不一致,是否存在相关性可以扩大样本量进一步研究。

本实验中,KRAS 基因突变与年龄、病理类型、吸烟、肿瘤分化程度等临床病理特点无相关性,与相关报道^[12-13]一致,与性别是否相关,在国内外报道中未能统一,本实验中男性 KRAS 突变率为31.5%,女性为11.4%,差异有统计学意义,提示KRAS 基因突变在男性中更常见。

KRAS 点突变好发在第 12 或 13 号密码子,本实验中第 12 号密码子突变率为 22.5% (20/89),1 例发生在第 13 号密码子,突变率为 1.1% (1/89),发生在第 12 号密码子的突变数目远高于第 13 号密码子的突变数目 其中检测出 2 例复合突变 均发生于第 12 号密码子,1 例为 p. G12V 和 p. G12D,1 例为 p. G12V 和 p. G12C,均为男性,有吸烟史,腺癌患者,同时行 EGFR 基因检测,结果均为野生型。

BRAF 基因突变见于多种肿瘤,以直肠癌突变率最高约15% 在黑色素瘤、肺癌、甲状腺癌、肝癌及胰腺癌中均存在不同比例的突变。在 NSCLC 中,突变率为1%~2% 其中大部分是腺癌。目前识别超过40种突变,在各种不同类型的突变中,约90%的 BRAF 突变发生于谷氨酸残基600单个替换为缬氨酸(V600E)。本研究中,只有1例患者检测出BRAF 基因突变,发生在女性,非吸烟,KRAS 基因野生型患者,突变率为1.1%(1/89),研究标本量较少,可通过扩大样本量来进一步证实突变率。在目前的研究[14]中,BRAF 突变与 KRAS 突变是排斥存在的,本实验中未发现 KRAS 和 BRAF 基因同时存在的病例。

原发灶和转移灶中相关基因突变位点可能不完 全相同 在使用靶向治疗时 不应忽略原发灶和转移 灶可能存在基因突变位点不一致的现象。本研究 中 标本选择有 3 例来自于转移性淋巴结 2 例来自恶性胸腔积液 ,由于标本来源少 ,故未行原发灶及转移灶基因突变状态对比研究。

对于 EGFR 突变型的 NSCLC 患者 ,EGFR-TKIs 治疗有效率为 $70\% \sim 80\%$,有 $20\% \sim 30\%$ 的患者存在原发性耐药 ,还有些患者初始治疗有效 ,后出现继发性耐药 ,这可能与 KRAS 或 BRAF 基因突变部分相关 ,因此给患者行 TKI 治疗前仅仅检测 EGFR 是否突变可能是不够的 ,在行 EGFR 基因突变检测同时需行 KRAS 和 BRAF 突变检测。

目前基因检测方法有很多种,直接测序法仍为金标准,但存在操作复杂、易污染、特异性低等,涨海萍等[15]通过对827例肿瘤病理石蜡切片样品提取DNA,同时运用 ADX-ARMs 技术和测序法进行检测,两种检测方法总体一致率为94.4%,突变一致率为100.0%,野生型一致率为92.5%,提示 ADX-ARMs 技术检测突变率较高,支持了 ADX-ARMs 技术的优势,指出了 ADX-ARMs 技术具有较高的检测灵敏度和可靠性。本实验运用 sARMS-PCR 法对NSCLC 患者石蜡包埋组织同时检测 KRAS、BRAF基因的突变状态,检测出基因突变率与国内外研究报道一致 临床使用 sARM-PCR 技术检测 NSCLC 患者 KRAS 基因和 BRAF 基因突变有较强敏感性,且石蜡组织标本取材方便,可作为这两种基因的临床检测方法。

带有 KRAS 第 12 号密码子突变的患者和野生型相比,化疗反应率相似,但带有 KRAS 基因第 13 号密码子突变的患者比 KRAS 野生型患者化疗后总体反应率更差,BRAF 基因是多种肿瘤的驱动基因,可能成为 NSCLC 患者治疗的新靶点,因此 NSCLC 患者多基因检测对肺癌个体化治疗有重要意义。

参考文献

- [1] Maemondo M, Inoue A, Kobayashi K, et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR [J]. N Engl J Med 2010 362(25): 2380 8.
- [2] Mitsudomi T, Morita S, Yatabe Y, et al. Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomised phase 3 trial[J]. Lancet Oncol 2010, 11(2):121-8.
- [3] Zhou C , Wu Y L , Chen G , et al. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation—positive non-small-cell lung cancer (<code>OPTIMAL</code> , <code>CTONG-0802</code>): a multicentre , <code>open-label</code> , <code>randomised</code> , <code>phase 3 study[J]</code>. Lancet Oncol <code>2011 ,l2(8):735-42</code>.

- [4] Rosell R, Carcereny E, Gervais R, et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial [J]. Lancet Oncol 2012, 13(3): 239-46.
- [5] Aviel-Ronen S ,Blackhall F H ,Shepherd F A ,et al. K-ras mutations in non-small-cell lung carcinoma [J]. Clinc Lung Cancer , 2006 8(1):30 8.
- [6] Shiqematsu H, Lin L, Takahashi T, et al. Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers [J]. J Natl Cancer Inst 2005 97(5): 339 –46.
- [7] Massarelli E , Varella-Garcia M , Tang X , et al. KRAS mutation is an important predictor of resistance to therapy with epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer [J]. Clin Cancer Res 2007 ,13(10): 2890 - 6.
- [8] O'Byrne K J, Gatzemeier U, Bondarenko I, et al. Molecular biomarkers in non-small-cell lung cancer: a retrospective analysis of data from the phase 3 FLEX study [J]. Lancet Oncol, 2011, 12 (8): 795-805.
- [9] Douillard J Y , Shepherd F A , Hirsh V , et al. Molecular predictors of outcome with gefitinib and docetaxel in previously treated

- non-small-cell lung cancer: data from the randomized phase III IN-TEREST trial [J]. J Clin Oncol 2010 28(5): 744 – 52.
- [10] Gealy R , Zhang L , Siegfried J M , et al. Comparison of mutations in the p53 and K-ras genes in lung carcinomas from smoking and nonsmoking women [J]. Cancer Epidemiol Biomarkers Prev , 1999 8(4 Pt 1): 297 - 302.
- [11] Porta M , Crous-Bou M , Wark P A , et al. Cigarette smoking and K-ras mutations in pancreas , lung and colorectal adenocarcinomas: etiopathogenic similarities , differences and paradoxes [J]. Mutat Res 2009 682(2-3):83-93.
- [12] Riely G J Marks J Pao W. KRAS mutations in non-small cell lung cancer [J]. Proc Am Thorac Soc 2009 6(2):201-5.
- [13] Riely G J ,Kris M G ,Rosenbaum D ,et al. Frequency and distinctive spectrum of KRAS mutations in never smokers with lung adenocarcinoma [J]. Clin Cancer Res 2008 ,14(18):5731-4.
- [14] Li S ,Li L ,Zhu Y ,et al. Coexistence of EGFR with KRAS , or BRAF , or PIK3CA somatic mutations in lung cancer: a comprehensive mutation profiling from 5125 Chinese cohorts [J]. Br J Cancer 2014 ,110(11):2812-20.
- [15] 张海萍,付 莉,陈培琼,等. 特异引物双扩增即时 PCR 与传统测序法检测肠癌、肺癌患者 K-ras 基因突变的比较[J]. 中华病理学杂志,2010,39(11):757-61.

sARMS-PCR detection in non-small cell lung cancer tumor tissue KRAS , BRAF gene mutation

Shao Lu, Hou Danyang Leng Zaijun, et al

(Dept of Respiratory , The Affiliated Provincial Hospital of Anhui Medical University , Hefei 230001)

Abstract Objective To explore the feasibility of use scorpion probe amplification refractory mutation system (sARMS-PCR) to detect Kirsten rat sarcoma viral oncogene homolog(KRAS) and V-rafmurine sarcoma viral oncogene homologB1(BRAF) gene mutations in non-small cell lung cancer (NSCLC) patients. To realize the clinical and pathological feature of KRAS, BRAF gene mutations in NSCLC patients, and to provide a theoretical basis for individualized treatment of NSCLC patients. *Methods* We collected 89 cases of tumor formalin-fixed paraffin-embedded tissue specimens (FFPE) in NSCLC patients then used DNA isolation kit to extract DNA and used sARMS to test KRAS and BRAF gene mutation. **Results** ① We found KRAS mutations in 21 patients (21/89) the mutation rate was 23.6%; the KRAS gene mutations included seven kinds of hot spots mutations, in which 6 were located at codon 12 and 13; the G12D and G12V site mutation and the G12C and G12C were detected from the 6 hot spots respectively; G12S mutant was not found; ② We only found BRAF gene mutation in one patient (1/89), the mutation rate was 1.1%. The mutation site was located at V600E, was a women, mucinous adenocarcinoma patient; (3) KRAS and BRAF gene never co-existed in the same patient. Conclusion Using sARMS-PCR technology to detect KRAS and BRAF gene mutations is feasible in NSCLC patients. There is no significant correlation with age , smoking history , pathological type in KRAS and BRAF gene mutations in NSCLC patients. KRAS gene mutation is related to gender, more common in women than in men (P < 0.05); KRAS and BRAF gene never coexist in the same patient.

Key words NSCLC; KRAS; BRAF; sARMS