网络出版时间:2016-3-88:29:01 网络出版地址:http://www.cnki.net/kcms/detail/34.1065. R. 20160308.0829.016. html

化学合成 microRNA-29a inhibitors 和 mimics 对 SD 大鼠心肌成纤维细胞活化增殖的影响

陈泽文,陶辉,周晓,施鹏,张家贵,宣海洋,占红英,石开虎

目的 探讨微小 RNA-29a (miR-29a) inhibitors 和 mimics 对大鼠心肌成纤维细胞活化增殖的影响。方法 取 SD 大鼠心肌组织,以组织块酶消化法分离细胞,通过差速贴 壁离心法收集、培养 SD 大鼠心肌成纤维细胞。应用 Lipofectamine™ 2000 Reagent 分别向大鼠心肌成纤维细胞瞬时转 染 miR-29a inhibitors 和 miR-29a mimics 24 h 和 48 h 后,实时 定量聚合酶链反应(qRT-PCR)检测 miR-29a、I 型胶原前胶 原 A1(Coll A1)和 α-平滑肌肌动蛋白(α-SMA)的 RNA 水平 的表达,MTT 法检测细胞增殖活性。结果 与正常对照组 和阴性对照组比较,在瞬时转染 miR-29a inhibitors 的心肌成 纤维细胞中, miR-29a 的表达水平下调; 而在转染 miR-29a mimics 的心肌成纤维细胞中, miR-29a 的表达水平上调。 Coll Al 在 miR-29a inhibitors 组中表达水平升高,而在 miR-29a mimics 组中则表达水平降低。α-SMA 在 miR-29a inhibitors 组中表达水平升高,在 miR-29a mimics 组中则表达水平 降低。瞬时转染 miR-29a mimics 24、48 h 后,与空白对照组 和其阴性对照组相比较,心肌成纤维细胞活力明显下降;而 瞬时转染 miR-29a inhibitors 24、48 h 后, 心肌成纤维细胞活 力则明显增强。结论 miR-29a mimics 可明显抑制心肌成 纤维细胞增殖活性,而 miR-29a inhibitors 则显著提高心肌成 纤维细胞的增殖活性,提示心肌纤维化的形成可能与 miR-29a 表达下调有关,其潜在的分子作用机制有待进一步研

关键词 microRNA-29a;心肌成纤维细胞; Coll Al; α-SMA; quantitative real-time PCR

中图分类号 R 542.2

文献标志码 A 文章编号 1000-1492(2016)04-0493-04

心肌纤维化是心房颤动(atrial fibrillation, AF)的病理生理学基础,可导致心律失常的发生和持续^[1]。心肌纤维化表现为细胞外基质(extracellular cell matrix, ECM)和胶原蛋白的过度沉积,最终导致

2015-12-21 接收

作者单位:安徽医科大学第二附属医院心胸外科、安徽医科大学心血 管病研究中心,合肥 230601

作者简介:陈泽文,男,硕士研究生;

石开虎,男,教授,主任医师,博士生导师,责任作者,E-mail; shikaihu@gmail.com

心肌功能的损害。在此过程中,心肌成纤维细胞(cardiac fibroblasts, CFs)发挥着重要的作用,其活化增殖则是心肌纤维化的关键环节^[2-3]。心肌纤维化形成的详细机制目前尚未完全明确,然而现有研究^[4]表明已有不少 miR 涉及心脏疾病的发生发展,其被称为心脏微小 RNA。miR 是一类短链、高度保守的非编码 RNA,在干扰转录和基因表达方面起着重要的调控作用^[3]。miR-29a 作为 miR-29 家族中的一员,已被证实在心肌纤维化中表达水平有显著变化^[5]。该研究通过观察 miR-29a 在大鼠 CFs 活化中的表达变化,初步探讨 miR-29a 在心肌纤维化中的表达变化,初步探讨 miR-29a 在心肌纤维化中的作用,为心肌纤维化的预防和治疗提供新思路。

1 材料与方法

- 1.1 实验动物 SPF 级雄性 SD 乳鼠 60 只,出生 1 ~3 d,平均体重 8 g,由安徽医科大学动物实验中心提供。
- 1.2 主要试剂 HyClone® DMEM/High Glucose 培养基、Thermo Scientific RevertAid First Strand cDNA Synthesis Kit 和 Maxima SYBR Green/ROX qPCR Master Mix(2 ×)购自美国 Thermo Fisher Scientific 公司;胎牛血清购自英国 Gibco 公司;胰蛋白酶购自美国 Wisent 公司; miR-29a inhibitors 和 miR-29a mimics、EzOmics miRNA qPCR Detection Primer 试剂 盒和 EzOmics One-Step qPCR 试剂盒购自美国 Biomic 公司; Lipofectamine™ 2000 Reagent、TRIzol 试剂购自美国 Invitrogen 公司; Opti-MEM® I(1 ×)购自美国 Life Technologies 公司; MTT 相关试剂购自美国 Sigma 公司; 转化生长因子-β1 (transforming growth factor-β1, TGF-β1)购自美国 Peprotech 公司; 引物由 上海生工生物工程有限公司合成。
- 1.3 主要仪器 NAPCO-6100 型细胞培养箱(美国SHELLAB公司); SW-CJ-IF 型超净工作台(苏州泰安空气技术有限公司); eppendorf Centrifuge 5417R高速冷冻离心机(德国 eppendorf 公司); StepOne® Real-Time PCR System(美国 ABI 公司); NanoPhotometer P-Class 分光光度仪(德国 Implen GmbH 公

司);酶标仪 MK3(荷兰雷勃公司)。

1.4 方法

- 1.4.1 CFs 的提取与细胞培养 取出生 3~5 d 内 的 SD 大鼠于 75% 乙醇溶液缸中浸泡 20 s 后,转移 至超净台。用无菌剪刀取出心脏,置于高压蒸汽灭 菌过的培养皿中。将大鼠心脏全部取出后,尽量完 全剔除心脏上的心房、结缔组织、脂肪和血管,预冷 PBS 液冲洗 3 次以去除血污。将心脏转移至离心管 后剪成约1 mm×1 mm×1 mm 的组织块,加入酶消 化液 3 ml、37 ℃水浴并振荡 15 min, 自然沉降 1 min 后吸取上清液入新离心管,加入 3 ml 37 ℃ 的 DMEM 培养基终止消化,混匀后以 900 r/min 离心 9 min, 反复操作 3 次, 弃上清液, 细胞沉淀加入 4 ml、 37 ℃的含 10% 胎牛血清的 DMEM 培养基吹散细胞 后,接种于培养瓶中,2 h 后使用差速离心贴壁法分 离以保留 CFs。在5% CO2、37 ℃培养箱中放置过 夜。培养 CFs 至 80%~90% 汇合状态时,采用胰蛋 白酶予以消化传代培养,取2~4代细胞用于实验, 经倒置显微镜、免疫组化方法鉴定为 CFs。
- 1.4.2 瞬时转染 miR-29a inhibitors 和 mimics 取对数生长期 CFs 进行转染实验。转染前 1 d,将 CFs 细胞计数后,接种于 6 孔板,用 Opti-MEM 稀释待转染。成熟 miR-29a inhibitors/mimics 由美国 Biomic 生物技术公司设计并合成。引物序列如下:miR-29a mimics 上游引物: 5'-UAGCACCAUCUGAAAUCG-GUUA-3',下游引物: 5'-UAACCGAUUUCAGAUG-GUGCUA-3';miR-29a inhibitors 引物序列:5'-UAAC-CGAUUUCAGAUGGUGCUA-3'。将 miR-29a inhibitors 和 mimics 及其阴性对照分别与脂质体 Lipofectamine™ 2000 Reagent 轻吹混匀,室温静置 20 min后,加入相应各孔细胞中,37 ℃、5% CO₂ 保温箱孵育 24 h,更换含血清及双抗的 DMEM 完全培养基并用浓度为 10 ng/ml 的 TGF-β1 刺激细胞生长,转染 48 h 后提取转染后细胞的总 RNA。
- 1.4.3 总 RNA 提取和一步法 qRT-PCR 检测 miR-29a 检测转染后 CFs 中的 miR-29a 含量,用 StepOne[®] Real-Time PCR 系统进行 qRT-PCR 检测。采用 TRIzol 并根据操作手册一步法抽提细胞总 RNA,紫外分光光度法测定 RNA 的浓度和纯度,通过计算吸光度(absorbance, A)值, A260/A280 的比值了解其纯度并选取比值在 1.8~2.0 的 RNA 样品进行试验。采用 EzOmics miRNA qPCR Detection Primer 试剂盒与 EzOmics One-Step qPCR 试剂盒并参照操作手册检测 miR-29a。反应条件如下:42 ℃、

- 30 min,95 ℃、10 min,接着 95 ℃、20 s,62 ℃、30 s,72 ℃、30 s 共 40 循环的扩增阶段条件;95 ℃、15 s,60 ℃、1 min,95 ℃、15 s 的溶解曲线阶段条件。以 U6 作为内参,用 $2^{-\Delta\Delta G}$ 法计算基因的相对表达水平。
- 1.4.4 qRT-PCR 法检测 Coll Al 和 α-SMA mRNA 表达 总 RNA 用 Thermo Scientific RevertAid First Strand cDNA Synthesis Kit 试剂盒并参照操作手册逆 转录合成 cDNA,然后应用 Maxima SYBR Green/ ROX qPCR Master Mix(2×)试剂盒并参照操作手册 进行 qRT-PCR 检测。从 GenBank 中查找引物序列 并设计合成相应引物。引物序列如下:鼠源 Coll A1 上游引物:5'-TAACTTCTGGACTATTTGCGGACTTT TTGG-3′, 下游引物: 5′-GTCCAGCCCTCATCCTG-GCC-3'。 鼠源 α-SMA 上游引物:5'-TGGCCACTGCT-GCTTCCTCTT-3′,下游引物:5′-GGGGCCAGCT-TCGTCATACTCCT-3'。 鼠源 β-actin 上游引物:5'-ACGGTCAGGTCATCACTATC-3',下游引物:5'-ACT-GTGTTGGCATAGAGGTC-3'。反应条件如下:50 ℃、 2 min,95 ℃、10 min,接着95 ℃、20 s,60 ℃、30 s,72 °C、30 s 共 50 个循环的扩增阶段条件;95 °C、15 s, 60 ℃、1 min,95 ℃、15 s 的溶解曲线阶段条件。以 β-actin 作为内参,用2-ΔΔCI法计算基因的相对表达 水平。
- 1.4.5 MTT 比色法检测细胞增殖 检测前设计分组:转染 miR-29a inhibitors 组、转染 miR-29a mimics 组、阴性对照组和空白对照组。将处于对数生长期的各组 CFs 用胰蛋白酶消化后,完全培养基重悬形成细胞悬液。用血球计数板进行细胞计数。以每孔 1×10^4 的密度铺于 96 孔板中,每组 5 个复孔,每孔200 μ l,连续监测 2 d,铺板过程中要确保每孔加入细胞数一致。置于 37 \times 5% CO₂ 培养箱培养。从铺板后第 2 天开始,每孔加入 5 g/L MTT,继续培养4h,吸取培养上清液,每孔加入 200 μ l DMSO,室温下摇床振荡 10 min,使蓝紫色结晶充分溶解,在酶标仪上测定各孔波长 490 nm 处 A 值。
- 1.5 统计学处理 采用 SPSS 19.0 软件进行分析,数据以 $x \pm s$ 表示。单变量两组资料间的比较采用 t 检验,多组均数的比较采用方差分析。所有实验数据分析重复至少 3 次。

2 结果

2.1 瞬时转染 miR-29a mimics、inhibitors 对 miR-29a 的表达影响 瞬时转染 CFs miR-29a mimics、in-

hibitors 及其阴性对照 48 h 后, One-step Real-time qPCR 结果显示, 转染 miR-29a mimics 后, 与正常对照组和阴性对照组比较, 实验组 miR-29a 的表达显著上调, 差异具有统计学意义(t=13.56、13.86, P<0.05), 转染 miR-29a inhibitors 后, 与正常对照组和阴性对照组比较, 实验组 miR-29a 的表达明显下降, 差异有统计学意义(t=9.23、8.65, P<0.05)。见图 1。

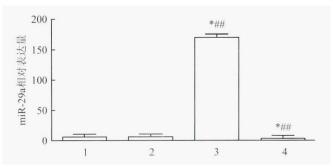


图 1 瞬时转染 48 h 后各组 CFs 内 miR-29a 的表达变化

1:例性对照组;2:空自对照组;3:转染 miR-29a mimics 组;4:转染 miR-29a inhibitors 组;与空自对照组比较;*P<0.05;与阴性对照组比较:**P<0.01

2. 2 瞬时转染 miR-29a mimics、inhibitors 对 Col1A1 和 α -SMA 的表达影响 瞬时转染 CFs miR-29a mimics、inhibitors 及其阴性对照 48 h 后, Real-time qPCR 结果显示,转染 miR-29a mimics 后,与正常对照组和其阴性对照组比较,实验组 Col1A1 和 α -SMA 的表达水平明显下调,差异有统计学意义 (Col1A1:t=7.31,7.22,P<0.05; α -SMA:t=5.45、5.67,P<0.05),转染 miR-29a inhibitors 后,与正常对照组和其阴性对照组比较,实验组 Col1A1 和 α -SMA 的表达水平显著上升,差异有统计学意义 (Col1A1:t=10.14、10.27,P<0.05; α -SMA:t=9.75,9.83,P<0.05)。见图 2。

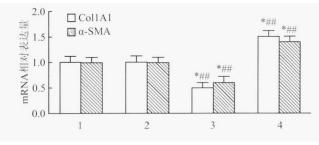


图 2 瞬时转染 48 h 后各组 CFs 内 Coll Al 和 α-SMA 的表达变化

1: 阴性对照组; 2; 室自对照组; 3: 转染 miR-29a mimies 组; 4: 转染 miR-29a inhibitors 组; 与室自对照组比较; *P < 0.05; 与阴性对照组比较: #P < 0.01

2.3 瞬时转染 miR-29a mimics、inhibitors 对 CFs 活化增殖的影响 瞬时转染 CFs miR-29a mimics 24.48 h 后,与空白对照组和其阴性对照组比较,实验组 CFs 活力明显下降,差异有统计学意义(F = 35.46.33.57, P < 0.05),而瞬时转染 CFs miR-29a inhibitors 24.48 h 后,与空白对照组和其阴性对照组比较,实验组 CFs 活力明显增强,差异有统计学意义(F = 21.23.25.18, P < 0.05)。见图 3。

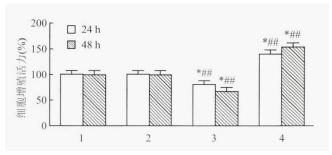


图 3 瞬时转染 48 h 后各组 CFs 增殖活性变化

1: 阴性对照组; 2: 室自对照组; 3: 转染 miR-29a mimics 组; 4: 转染 miR-29a inhibitors 组; 与室自对照组比较: * P < 0. 05; 与阴性对照组比较: ***P < 0. 01

3 讨论

CFs 是心脏中数量最多的细胞,在心肌纤维化中发挥重要的调控作用。在心肌纤维化的过程中,CFs 受到 TGF-β1、血管内皮生长因子(vascular endothelial growth factor,VEGF)等因子刺激,分化为以α-SMA 为表面标志物肌成纤维母细胞,有较强的胶原分泌能力 。因此,心肌纤维化主要是通过 CFs活化增殖成肌成纤维母细胞,促进 Coll A1 和α-SMA 等的过度表达,使得 ECM 蛋白和胶原过度沉积,导致纤维化发生。

研究¹³ 表明, miR 在纤维化器官尤其是心脏中起着重要的作用。如心梗大鼠敲除 miR-21 基因后,心肌纤维化水平降低,表明 miR-21 高表达可促进 CFs 的增殖 ⁷ 。miR-24 可以维持 TGF-β 表达水平的稳定,以此以减少心肌纤维化的发生 ¹⁸ 。miR-29 大多由成纤维细胞生成, miR-29 家族是纤维化的关键调节因子, 调节胶原和其他 ECM 基因在 mRNA 水平上的表达 ¹⁹ 。一方面, miR-29 可以通过下调抗 凋亡基因以促进心肌细胞凋亡; 另一方面, miR-29 可以抑制胶原生成,从而产生抗纤维化的作用。此外, miR-29a 则可以通过上调 RASSF1A 表达水平,降低心肌纤维化水平 ¹⁰ 。miR-29a inhibitors 和 mimics 分别是 miR-29a 的抑制剂和促进剂, 可以分

别抑制和促进 miR-29a 的表达,然而 miR-29a 在 CFs 活化增殖中具体的调控模式尚不十分清楚。

本研究用 miR-29a inhibitors 和 mimics 转染体 外培养的新生 SD 大鼠 CFs, 检测转染后 CFs 的增殖 变化以及 miR-29a、Coll A1 和 α -SMA 的表达水平。结果表明 miR-29a mimics 可明显抑制 CFs 的增殖活性,降低 Coll A1 和 α -SMA 的表达水平;而 miR-29a inhibitors 则表现为促进 CFs 的增殖活性。

综上所述, miR-29a mimics 转染 CFs 后, miR-29a 表达上升, 而 CFs 中 miR-29a 的高表达可以抑制其活化增殖, 抑制心肌纤维化的发生发展, 表明 miR-29a 是 CFs 活化增殖的潜在的靶向分子, 这为预防和治疗心肌纤维化提供新思路。

参考文献

- Santulli G, Iaccarino G, De Luca N, et al. Atrial fibrillation and microRNAs[J]. Front Physiol, 2014, 5:15.
- [2] Santulli G, Dáscia SL, Dáscia C. Development of atrial fibrillation in recipients of cardiac resynchronization therapy: the role of atrial reverse remodelling[J]. Can J Cardiol, 2012, 28(2):245. e17 – 8.
- [3] 张 猛,陶 辉,陈泽文,等. 化学合成 microRNA-21 inhibitors

- 对大鼠心肌成纤维细胞活化增殖的影响[J]. 安徽医科大学学报,2015,50(5):577-81.
- [4] Kotoh M. Cardio-miRNAs and onco-miRNAs; circulating miRNA-based diagnostics for non-cancerous and cancerous diseases [J]. Front Cell Dev Biol, 2014, 2:61.
- [5] 郝 嘉,游 凯,肖颖彬. 心肌成纤维细胞的特性和调节[J]. 心血管病学进展,2011,32(3);405-8.
- [6] Chen P Y, Qin L, Zhuang Z W, et al. The docking protein FRS2α is a critical regulator of VEGF receptors signaling [J]. Proc Natl Acad Sci U S A, 2014,111(15):5514-9.
- [7] Cardin S, Guasch E, Luo X, et al. Role for microRNA-21 in atrial profibrillatory fibrotic remodeling associated with experimental postinfarction heart failure [J]. Circ Arrhythm Electrophysiol, 2012,5(5):1027-35.
- [8] Wang J, Huang W, Xu R, et al. MicroRNA-24 regulates cardiac fibrosis after myocardial infarction [J]. J Cell Mol Med, 2012, 16 (9):2150-60.
- [9] Tan J, Tong B D, Wu Y J, et al. MicroRNA-29 mediates TGFβ1-induced extracellular matrix synthesis by targeting wnt/β-catenin pathway in human orbital fibroblasts[J]. Int J Clin Exp Pathol, 2014,7(11):7571-7.
- [10] Tao H, Yang J J, Chen Z W, et al. DNMT3A silencing RASSF1A promotes cardiac fibrosis through upregulation of ERK1/2 [J]. Toxicology, 2014,323;42-50.

Effect of microRNA-29a inhibitors and mimics on proliferation and activation of cardiac fibroblasts in rats

Chen Zewen, Tao Hui, Zhou Xiao, et al

(Dept of Cardio-Thoracic Surgery, The Second Affiliated Provincial Hospital of Anhui Medical University, Dept of Cardiovascular Disease Research Center, Anhui Medical University, Hefei 230601)

Abstract *Objective* To explore the effection of miR-29a inhibitors and mimics on proliferation and activation of cardiac fibroblasts in rats. *Methods* Cardiac fibroblasts were isolated from newly born male SD rats. miR-29a inhibitors or mimics was transfected respectively into cardiac fibroblasts through Lipofectamine TM 2000 Reagent. Twenty-four and Forty-eight hours after transfection, the expressions of miR-29a and mRNA of Col1A1 and α-SMA were analyzed by qRT-PCR. MTT assay was used to detect the proliferation activity of the transfected cardiac fibroblasts. *Results* Compared with normal group and negative group, expression of miR-29a was down-regulated in miR-29a inhibitors group while up-regulated in miR-29a mimics group. Col1A1 mRNA expression was up-regulated in miR-29a inhibitors group while down-regulated in miR-29a mimics group. α-SMA mRNA expression was up-regulated in miR-29a inhibitors group while down-regulated in miR-29a mimics group. The cardiac fibroblasts proliferation activity decreased significantly after transfected miR-29a mimics while increased in miR-29a inhibitors groups. *Conclusion* miR-29a mimics can suppress the proliferation activity of cardiac fibroblasts significantly, implicating miR-29a as a potential target for cardiac fibroblasts activation and proliferation and pointing to this result can provide new way of thinking of interventions designed to prevent the cardiac fibrosis occurrence and development.

Key words microRNA-29a; cardiac fibroblasts; Col1A1; α-SMA; qRT-PCR