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DNA was extracted from HepG2 cells then 937 667 553 and 399 bp fragments before the translation start site of
SAMHD1 gene were amplified by PCR from genomic DNA. Four fragments were inserted into the pMD19-T vector.
After enzyme digestion and electrophoresis DNA bands were separated and ligated into pGL3-Basic vector. The
pGL3 plasmids containing four fragments were further identified by double enzyme digestion and DNA sequencing.
The luciferase expression vector containing four fragments was co-iransfected with pRL-TK into HepG2 cells and the
promoter activities of four fragments were analyzed by luciferase assay. The transcription initiation site of SAMHDI
in HepG2 cells was identified by 5’'RACE. Results  Electrophoretic results showed that genomic DNA had been
successfully extracted from HepG cells. The results of electrophoresis after PCR amplification showed that 937
667 553 and 399 bp fragments had been amplified. The results of electrophoresis showed that four fragments were
successfully inserted into pMD19-T vector. Double enzyme digestion and DNA sequencing confirmed that luciferase
expression vectors pGL3-937 pGL3-667 pGL3-553 and pGL3-399 were successfully constructed. Luciferase ac—
tivity analysis showed that the SAMHDI1 core promoter region was located in the 0 ~ —399 region( the first base be—
fore ATG was set as 4) . 5’'RACE results showed that the transcription initiation site of SAMHD1 in HepG2 cells
was located at —101. Conclusion The core promoter of SAMHDI is located at — 101 ~ —399 region which lays
a foundation for further study of SAMHDI transcriptional regulation in hepatocytes.
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Isolation of mouse alveolar macrophages

by flow cytometry and identification
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Abstract Objective To establish a method for isolating alveolar macrophage ( AM) of mouse based on flow cy—
tometry. Methods The lungs were digested by collagen IV in witro to prepare single-cell suspension that was
stained by CD11b and CD11¢ antibody. CD11b"CD11¢" cell population were AM and isolated by flow cytometry.

After that the cell viability was measured via the Typan blue staining and the identification of AM was through
flow cytometry and real-time PCR. Results CDI11b"™CDI11c" cell population was isolated by flow cytometry the
purity was (93 £2) % and the cell viability was (80 £5) % . The real-time PCR results showed that peroxisome
proliferator-activated receptor y( PPARy) mRNA was highly expressed in AM isolated by flow cytometry ( P <

0.001) . In addition the functional assay showed that the isolated AM possess high phagocytic activity. Thus the
results described above demonstrate that the isolated cells were AM. Conclusion A method for obtaining AM
based on flow cytometry was established. The method has high cell purity and good cell activity which can be used
for functional experiments.
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