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mice were then randomly divided into 4 groups: normal saline control group was group A gemcitabine chemotherapy
group was group B gemcitabine combined with megakaryocytes group was group C gemcitabine combined with
tumstatin transgenic megakaryocytes group was group D and the latter three groups were the treatment group. The
mice in each group were administered for 24 days and the tumor volume was measured every 3 days. Blood sam—
ples were taken from the 15th day blood cell values were measured by blood cell analyzer. On day 24 the tumor
was dissected and the size and quality were measured. The microvessel density ( MVD) was tested by immunohisto—
chemistry. Tumor necrosis was detected by hematoxylin and eosin staining. Survival of mice was recorded during
treatment. Results The tumor volume growth curve of the treatment group was significantly slower than that of the
normal saline group. The survival rate of the tumstatin transgenic megakaryocytic cells was the slowest. The survival
rate was significantly improved compared with the chemotherapy group( group B) . Compared with the normal saline
group and other treatment groups group D significantly inhibited tumor MVD and caused severe necrosis of tumor
tissue and the corresponding mice maintained a normal blood cell level. Conclusion The combination of tumsta—
tin monocyte megakaryocytosis can enhance the survival rate of lung adenocarcinoma mice and inhibit the MVD of
lung adenocarcinoma significantly.
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The expression and significance of SOX9 and molecules of WNT
signaling pathway in lung tissues of preterm rats

after hyperoxia exposure
Yan Longli Quan Yufeng Zhang Hua et al
( Dept of Newborn The Affiliated Hospital of Guilin Medical College Guilin 541001)

Abstract Objective To study the expression of SOX9 and molecules of WNT signaling pathway in lung tissues of
preterm rats after hyperoxia exposure and to explore the pathogenesis of lung injury after hyperoxia exposure.

Methods Seventy-itwo one-day-old Sprague Dawley preterm rats were randomly divided into hyperoxia group and
air group with 36 rats in each group. Each group was further divided into 3-day 5-day and 9-day subgroup with
12 rats in each subgroup. Rats of hyproxia group were exposed to 95% oxygen. The rats in each group were sacrife—
ced at each time and gathered lung tissue samples. Hematoxylin and eosin staining was used to observe the patho—
logical of changes in lung tissues. Semi-quantitative reverse transcription polymerasechain reaction and Western blot
were used to measure the mRNA and protein expression of SOX9 B-catenin LEF4 SPC and a-SMA in lung tis—
sues. Results The inflammatory cells seepage and infiltration hyperaemia and alveolar compression was detected
in hyperoxia group at 3 d. The hyperoxia group at 5 d and 9 d showed the broadening alveoli septas and disorgan—
ized lung tissues. Compared with the air group the expression of B-catenin LEF4 SPC and a-SMA were in—
creased in hyperoxia group ( P <0.05) and their expressions were gradually increased over the time of hyperoxia
exposure. The hyperoxia group had higher mRNA and protein of SOX9 at 3 and 5 days compared with the air
group at the same time ( P <0.01) and hyperoxia group had the highest expression of SOX9 at 3 days had the
same level of SOX 9 expression in air group and hyproxia group at 9 days( P >0. 05) . The expression of SOX 9 in
hyproxia group at 3 days were lower than the hyproxia group at 5 days. Conclusion High concentration of oxygen
exposure through activate WNT signaling pathway to cause preterm rats lung injury and SOX 9 in hyperoxia-in—
duced lung tissues may suppress WNT signaling pathway to take part in the hyperoxic lung injury.
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