网络出版时间: 2018 - 8 - 10 15: 56 网络出版地址: http://kns.cnki.net/kcms/detail/34.1065.r. 20180808.1718.034. html

自动化腹膜透析治疗尿毒症伴充血性心衰的临床应用

李腊明 姜 俊 赵 宸 任 伟

摘要 探讨自动化腹膜透析(APD)治疗尿毒症伴充血性心力衰竭(CHF)患者的效果。回顾性分析以腹膜透析为起始肾替代治疗的尿毒症患者共120例,分为APD组、不卧床持续腹膜透析(CAPD)组及血液透析(HD)组,每组各40例,比较3组患者的临床疗效及心功能相关指标的变化。经治疗后,APD组完全缓解率(92.5%)显著高于CAPD组(65.0%)及HD组(75.0%),差异具有统计学意义(P<0.05)。同时,APD组心功能相关指标改善情况显著优于CAPD组及HD组,差异具有统计学意义(P<0.05)。APD对尿毒症伴有CHF患者的治疗效果与传统方法相比,缓解率高利于改善心功能指标提高患者的生活质量。

关键词 自动化腹膜透析; 尿毒症; 充血性心力衰竭; 不卧床持续腹膜透析; 血液透析

中图分类号 R 459.51

文献标志码 A 文章编号 1000 - 1492(2018) 10 - 1645 - 03 doi: 10. 19405/j. cnki. issn1000 - 1492. 2018. 10. 034

腹膜透析(peritoneal dialysis PD) 不仅可为终末 期肾病患者提供溶质清除和超滤[1] 同时具有对血 流动力学影响小、保护残肾功能等优点。随着透析 患者透析时间的增加,各种并发症逐渐出现,其中, 充血性心力衰竭(congestive heart failure ,CHF) 被认 为是透析患者入院的常见原因之一[2]。因此,改进 肾脏替代治疗的方法 降低 CHF 的发生率成为近期 研究的热点。目前的腹膜透析模式包括不卧床持续 腹膜透析(continuous ambulatory peritoneal dialysis, CAPD) 和自动化腹膜透析(automatic peritoneal dialvsis (APD)。CAPD 治疗会增加腹膜炎以及腹膜超 滤功能失败的风险,限制了其进一步的临床应 用^[3] 而 APD 可以根据患者的腹腔及腹膜状态调整 治疗方案 .已有研究[4] 显示 APD 可用于尿毒症合并 CHF 的治疗。该文通过与 CAPD 和传统的血液透 析(hemodialysis ,HD) 相比较 探究 APD 对尿毒症伴

有 CHF 患者的临床应用优势和特点。

1 材料与方法

- 1.1 病例资料 收集 2010 年 1 月~2011 年 12 月在安徽省立医院肾内科以 PD 为起始替代治疗方式的尿毒症合并 CHF 患者,纳入标准: ① 年龄≥18岁; ② PD 时间超过 3 个月。排除标准: ① 恶性肿瘤; ② 合并有严重基础心脏疾病,先天性心脏病; ③ 合并重度感染; ④ 急性肾损伤。共 120 例患者纳入本研究,所有患者入院时签署知情同意书。
- 1.2 研究方法 所有腹膜透析患者初始治疗时采用 CAPD 以 1.5% 腹膜透析液 2 L 留腹 4~6 h,每日交换 4次,夜间留腹。1~3个月定期门诊随访,并完善腹膜平衡试验及腹膜透析充分性的评估。收集所有患者入院后一般临床资料,包括性别、年龄、血压、体重、身高、原发病、PD 时间、生化指标及心脏彩超结果,并根据患者入院时不同肾脏替代治疗模式分为 3 组: APD 组、CAPD 组及 HD 组,记录相关指标,住院期间完善心脏彩超检查,比较 3 组患者72 h 之内完全缓解率、心脏超声及治疗前后 N 端前脑钠 肽(N-terminal pronatriuretic peptide,NT-proBNP)、平均动脉压(mean arterial pressure,MAP)及体重的变化差异。治疗过程中密切观察患者生命体征。

1.3 相关定义与标准

- 1.3.1 心功能分级 按照纽约心脏协会(NYHA)标准执行。心功能衰竭治疗后的临床疗效判断:①完全缓解:心衰完全缓解 心功能恢复正常或改善在NYHA II 级以下;②部分缓解:心功能未能明显改善或改善在 NYHA II 级以上。
- 1.3.2 腹膜透析改为血液透析标准 ① 合并有高钾血症 血 K^+ 大于6.5 mmol/L;② 合并有难以控制的腹膜透析相关性腹膜炎;③ 合并有难以控制的隧道或隧道感染。
- 1.4 统计学处理 采用 SPSS 11.0 软件进行分析,计量资料以 $\bar{x} \pm s$ 表示,计量资料组间比较采用单因素方差分析,两两比较采用 LSD 方法,计数资料采用 χ^2 检验或 Fischer 确切概率法。

²⁰¹⁸⁻⁰⁵⁻²¹ 接收

基金项目: 安徽省卫生厅医学科研课题(编号: 09C215)

作者单位: 安徽医科大学附属省立医院肾脏内科 / 合肥 230001

作者简介: 李腊明 ,男 ,硕士研究生;

任 伟 ,男 ,教授 ,主任医师 ,硕士生导师 ,责任作者 ,E-mail: renweisn@ 163. com

2 结果

- 2.1 一般临床资料、临床指标以及肾脏基础疾病的比较 3 组患者的一般临床资料包括年龄和性别构成 临床指标包括白蛋白、透析时间、血红蛋白、起始 MAP、尿素清除指数(Kt/V)和 NT-proBNP,以及肾脏基础疾病比较差异无统计学意义,见表 1。
- 2.2 治疗后临床疗效及心功能相关指标的比较经过治疗后,APD组的临床完全缓解率(92.5%)显著高于HD组(75.0%)及CAPD组(65.0%),差异具有统计学意义(P<0.05)。APD组体重的减轻、MAP下降及白蛋白水平的升高均显著高于HD组及CAPD组,差异具有统计学意义(P<0.05)。治疗后,APD组的心功能相关指标包括NT-proBNP变化、左心射血分数(LVEF)和心指数均显著高于HD组及CAPD组产室壁厚度显著低于HD组及CAPD组产室以(P<0.05),见表2。

3 讨论

作为各种晚期肾脏疾病共有的临床综合征,尿毒症已经成为危害人类健康的主要疾病之一。流行病学调查显示我国慢性肾脏疾病(chronic kidney disease ,CKD) 患者人数接近 1.2 亿例 ,其中 ,最终发展为尿毒症的人数已超过 200 万^[5]。目前,临床上尿毒症的治疗方式主要包括药物、血液透析、腹膜透析以及肾脏移植等,其中,腹膜透析对血流动力学影响小,对心脏负担相对较小,被认为是合并心脑血管疾病的尿毒症患者首选的治疗方式。

APD 具有血流动力学稳定、无需抗凝、容量控制和溶质清除能力强、操作简便、安全易行、显著改善患者生活质量等优势^[6]。因此,被广泛用于尿毒症的治疗中。本研究结果显示,APD治疗不仅可以提高的临床尿毒症患者的完全缓解率,还能够稳定患者心功能,降低并发症的发生。

项目	HD 组	CAPD 组	APD 组	χ^2/F 值
年龄(年 x ± s)	49.6 ± 15.6	50.4 ± 15.1	51.4 ± 14.3	0.219
男/女(n)	16/24	18/22	14/26	0.659
白蛋白(g/L x ± s)	30.4 ± 5.2	29.8 ± 4.8	29.9 ± 5.2	0.420
透析时间(月 x ± s)	27.3 ± 22.3	26.5 ± 21.3	28.4 ± 23.4	0.110
血红蛋白(g/L x ± s)	82.9 ± 17.2	82.4 ± 17.5	82.6 ± 19.7	0.172
MAP(kPa $\bar{x} \pm s$)	14.8 ± 1.8	16.0 ± 2.0	15.2 ± 1.76	0.744
$\operatorname{Kt}/\operatorname{V}(\bar{x}\pm s)$	1.32 ± 0.16	1.36 ± 0.21	1.31 ± 0.21	0.348
NT-proBNP(pg/ml $\bar{x} \pm s$)	$15\ 482\ \pm 10\ 866$	$14\ 592 \pm 9\ 505$	$15\ 110\pm 8\ 841$	0.095
慢性肾小球肾炎[n(%)]	21(62.0)	23(66.7)	24(60.0)	
糖尿病肾病[n(%)]	12(28.0)	7(17.5)	8(20.0)	
间质性肾病 [n(%)]	0	0	1(2.5)	
高血压肾病[n(%)]	2(4.0)	2(5.0)	2(5)	8.904
狼疮性肾炎[n(%)]	0	1(2.5)	1(2.5)	
ANCA 相关性肾炎[n(%)]	0	2(5.0)	0	
未知[n(%)]	5(10.0)	5(10.0)	4(8.0)	

表 1 3 组患者的临床资料及肾脏基础疾病比较(n=120)

表 2	3 组患者治疗后临床疗效及心功能相关指标的变化()	=40

指标	HD 组	CAPD 组	APD 组	χ^2/F 值
完全缓解[n(%)]	30(75.0)	26(65.0)	37(92. 5) * ##	78.333
部分缓解[n(%)]	10(25.0)	14(35.0)	3(7.5)	
体重变化(kg x ± s)	5.58 ± 3.16	5.13 ± 3.31	7.19 ± 3.74 * #	9.283
MAP 变化(kPa ѫ ± s)	1.8 ± 1.2	1.6 ± 1.1	$2.5 \pm 1.5^{*}$ ##	4.470
白蛋白变化(g/L x ± s)	4.02 ± 0.79	3.47 ± 0.73	4.91 ± 0.53 * * ##	43.805
NT-proBNP 变化(pg/ml ਫ਼ ± s)	$7\ 487 \pm 5\ 404$	$6\ 679 \pm 5\ 610$	9 858 ± 5 651* ##	4.309
LVEF($\% \ \bar{x} \pm s$)	60.5 ± 5.5	62.7 ± 5.7	$64.7 \pm 6.8^*$ ##	4.349
心指数 [(L/min • m²)	2.59 ± 0.26	2.60 ± 0.27	$2.80 \pm 0.25^{*}$ #	9.366
左室壁厚度(mm ਫ਼ ± s)	12.56 + 1.47	11.92 + 1.25	11.45 + 1.16 * * #	7.363

与 HD 组比较: * P < 0.05 , * * P < 0.01; 与 CAPD 组比较: * P < 0.05 , # P < 0.01

作为尿毒症常见的并发症,CHF被认为是腹膜透析患者住院治疗的主要原因^[7]。本研究的结果显示 APD 相对 HD 及 CAPD 可以在短期内快速平稳减轻患者的体重,降低患者的平均动脉压,从而减少患者的容量负荷,降低患者发生 CHF 的概率。另外,Jagadeswaran et al^[8]的研究通过对透析的 CKD患者的营养状况进行营养不良评分(MIS),其结果显示 MIS 是决定透析死亡率的重要因素。在本研究中,APD 组患者血液中白蛋白的水平显著高于HD 及 CAPD 组 提示 APD 在一定程度上能够提高尿毒症患者的营养状况,降低患者的死亡率。

研究^[9-10]表明,NT-proBNP水平升高与心脏功能障碍、血容量过多以及住院和死亡风险升高有关。本研究表明 APD 能够显著降低 NT-proBNP水平,同时对心功能其他的相关指标包括 LVEF 和心指数、左室壁厚度均具有一定的改善作用,提示 APD 在提高尿毒症完全缓解率的同时,还能够改善患者的心脏功能障碍,降低患者住院及死亡的概率。

参考文献

[1] Kazory A. Fluid overload as a major target in management of cardiorenal syndrome: implications for the practice of peritoneal dialysis [J]. World J Nephrol , 2017 , 6(4):168 - 75.

- [2] Chan L , Poojary P , Saha A , et al. Reasons for admission and predictors of national 30-day readmission rates in patients with end-stage renal disease on peritoneal dialysis [J]. Clin Kidney J , 2017 , 10(4):552-9.
- [3] Khanna R, Krediet R T. Nolph and gokal's textbook of peritoneal dialysis [M]. Springer US, 2009: 303 – 34.
- [4] Gotloib L , Fudin R. The impact of peritoneal dialysis upon quality of life and mortality of patients with end-stage congestive heart failure [J]. Contrib Nephrol , 2006 , 150: 247 – 53.
- [5] Yano Y , Fujimoto S , Asahi K , et al. Prevalence of chronic kidney disease in China [J]. Lancet , 2012 , 380(9838): 213 – 4.
- [6] 倪兆慧,金海姣. 自动化腹膜透析的新应用[J]. 中华肾病研究电子杂志,2015,4(1):10-3.
- [7] Corciulo R. The peritoneal ultrafiltration in patients with cardio-renal disease [J]. G Ital Nefrol , 2017 , 34 (Suppl 69): 86 103.
- [8] Jagadeswaran D, Indhumathi E, Hemamalini AJ, et al. Inflammation and nutritional status assessment by malnutrition inflammation score and its outcome in pre-dialysis chronic kidney disease patients[J]. Clin Nutr, 2018 [Epub ahead of print].
- [9] Lampón N, Hermida-Cadahia E F, Riveiro A, et al. Association between butyrylcholinesterase activity and low-grade systemic inflammation [J]. Ann Hepatol, 2012, 11(3): 356-63.
- [10] Ludka O, Spinar J, Tomandl J, et al. Comparison of NT-proBNP levels in hemodialysis versus peritoneal dialysis patients [J]. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub, 2013, 157(4):325-30.

Clinical application of automated peritoneal dialysis in the treatment of uremia with congestive heart failure

Li Laming , Jiang Jun , Zhao Chen , et al

(Dept of Nephrology, The Affiliated Provincial Hospital of Anhui Medical University, Hefei 230001)

Abstract To investigate the efficacy of automated peritoneal dialysis (APD) in the treatment of uremic patients with congestive heart failure (CHF). A total of 120 patients with uremia who underwent renal replacement therapy with peritoneal dialysis were retrospectively analyzed and divided into APD group , continuous ambulatory peritoneal dialysis (CAPD) group and hemodialysis (HD) group , with 40 cases in each group. The clinical curative effect and the changes of related indexes of cardiac function in three groups of patients were compared. After treatment , the complete remission rate (92.5%) in APD group was significantly higher than that in CAPD group (65.0%) and HD group (75.0%) , with a significant difference (P < 0.05). At the same time , the improvement of heart function related indicators in the APD group was significantly better than that in the CAPD group and the HD group , with a significant difference (P < 0.05). The therapeutic effect of APD on uremic patients with CHF is higher than that of the traditional method , which helps to improve the cardiac function index and improve the patient's quality of life.

Key words automated peritoneal dialysis; uremia; congestive heart failure; continuous ambulatory peritoneal dialysis; hemodialysis