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NQQ) was used to induce tongue cancer in mice and serum proteomic analysis was performed at a specific time
point during the development of tongue cancer in mice. Results At 24 weeks mice were successfully induced into
tongue cancer and some mice developed invasive carcinoma. The results of serum proteomics analysis were as fol—
lows in the compare groups of 8 weeks vs 16 weeks cancer-associated collagen alphad protein was up—<egulated
and Fibronectin ( FN) was down-regulated. FHL1 FN heat shock protein 84b( HSP 84b) serine/threonine-pro—
tein ( PP2A) and ( 1433) were found down-regulated in the compare groups of 16 weeks vs 24 weeks. Signal
pathway analysis showed that cancer—elated signaling pathways such as RAS NF+«B PI3K and JAK-STAT were
abnormal in tongue carcinogenesis. Conclusion According to the results of iBT quantification analysis FHL1
FN HSP PP2A 1433 etc. are found abnormally express in the process of tongue tumorigenesis. Those pro—
teins may become markers for the diagnosis of tongue cancer. The abnormal pathways such as: NF+«B PI3K
JAK-STAT etc. may become important targets for immunotherapy of tongue cancer.
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Abstract Objective To find the least channels and to explore electroencepharologram( EEG) features which are
closely related to emotion. Methods Thirty subjects were invited to watch four typical emotional pictures ( relax—
ed depressed delightful and fearful) with their EEGs simultaneously recorded. EEG features were selected from
each channel and the classification accuracy rates of four categories emotion were assessed by support vector ma—
chine ( SVM) algorithm. Results 24 subjects were induced four categoriesemotion effectively. The average of the
F-score of B-wave ~y-wave information entropy and the differential entropy were used as evaluation indexes of e—
motion validity for each channel. The classification accuracy rate of the screened five channels ( FT7 T7 FC4
TP10 O1) was 81. 15% . Conclusion Corrected F-score algorithm is used to select the combination of features
and the optimal channel set closely related to emotion which can greatly reduce the computation time and have
great value in realizing fast and real-time on-ine recognition of emotion.
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