网络出版时间: 2019 - 1 - 3 17:25 网络出版地址: http://kns.cnki.net/kcms/detail/34.1065.r.20181230.1809.014. html

姜黄素联合 KLF8 基因 siRNA 调控 JAK2/STAT3 信号通路 对乳腺癌细胞生长抑制作用的研究

李 新1 件 冰1 李庆辉1 张成娟2

目的 探讨姜黄素联合 Krüppel 样转录因子 8 (KLF8)基因小干扰 RNA(siRNA)调控蛋白酪氨酸激酶 2/信 号转导与转录因子 3(JAK2/STAT3) 信号通路对乳腺癌细胞 生长抑制的影响。方法 将生长至对数期的人乳腺癌 MCF-7细胞随机分为阴性对照组、KLF8-siRNA、姜黄素组和 KLF8-siRNA+姜黄素组; CCK-8 试剂及流式细胞仪分别检测 处理 48 h 各组细胞的活力及凋亡率; Western blot 检测 JAK2/STAT3 信号通路磷酸化的蛋白酪氨酸激酶 2(p-JAK2) 和磷酸化的信号转导与转录因子 3(p-STAT3) 及靶基因细胞 周期素 D1(Cyclin D1) 和 B 细胞淋巴瘤/白血病-2(Bcl-2)的 蛋白表达。结果 转染 KLF8-siRNA 的 MCF-7 细胞 KLF8 的 表达明显降低; KLF8-siRNA 组和姜黄素组的细胞活力及 Cyclin D1、Bcl-2、p-JAK2 和 p-STAT3 的蛋白表达均显著低于阴 性对照组 高于 KLF8-siRNA + 姜黄素组 细胞凋亡率显著高 于阴性对照组,低于 KLF8-siRNA + 姜黄素组(P < 0.05); 姜 黄素、KLF8-siRNA 及 JAK2/STAT3 信号抑制剂 AG490 共同 处理细胞相对于姜黄素和 KLF8-siRNA 处理的细胞活力明 显降低 "凋亡率升高 "Cyclin D1、Bcl-2、p-JAK2 和 p-STAT3 的 表达降低(P<0.05)。结论 下调 KLF8 基因表达和姜黄素 均能通过抑制 JAK2/STAT3 信号通路降低乳腺癌细胞活力, 诱导细胞凋亡,两者联合对细胞活力及凋亡的影响作用更

关键词 KLF8 基因; 姜黄素; 乳腺癌; 凋亡; JAK2/STAT3 信号通路

中图分类号 R 737.9

文献标志码 A 文章编号 1000 – 1492(2019) 01 – 0069 – 05 doi: 10.19405/j. cnki. issn1000 – 1492.2019.01.014

Krüppel 样转录因子 8 (KLF8) 是 Krüppel 样转录因子 (Krüppel like transcription factor ,KLFs) 家族成员之一 ,是表达广泛的一个 Krüppel 样转录因子 ,参与细胞的增殖、分化、凋亡、迁移、细胞外基质形成等多种生物学过程[1] ,研究[2-3]显示 ,包括乳腺癌在

2018-09-12 接收

基金项目: 国家自然科学基金青年科学基金资助项目(编号: 81602637)

作者单位: 1 郑州人民医院乳腺外科 郑州 450003

² 郑州大学附属肿瘤医院河南省肿瘤医院 郑州 450003 作者简介: 李 新 ,女 ,硕士 ,副主任医师 ,责任作者 ,E-mail: emll30 @ 163. com 内的多种肿瘤中 KLF8 呈现出过表达,而抑制 KLF8 后可降低肿瘤细胞生长,提示抑制乳腺癌中 KLF8 的表达可能影响其发生发展,但目前研究尚不清楚。

姜黄素(Curcumin) 是姜黄的根茎中提取出来的一种酚性色素 ,具有明显的抗肿瘤作用 ,有研究^[4]显示 ,姜黄素可明显抑制多种肿瘤的生长及诱导凋亡。抑制 KLF8 基因表达与姜黄素联合用于乳腺癌是否产生协同治疗作用尚不清楚。因此 ,该研究通过 RNA 干扰抑制 KLF8 基因表达及姜黄素单独或共同处理乳腺癌细胞 ,检测对癌细胞活力和凋亡的影响 ,并进一步研究对其生物学特性影响的可能分子机制。

1 材料与方法

- 1.1 主要试剂和仪器 小牛血清及 RPMI1640 培养基购自美国 Gibco 公司; 姜黄素购自美国 Sigma公司; AG490 购自美国 Biosource 公司; 细胞计数试剂盒(cell counting kit-8, CCK-8) 试剂盒和二喹啉甲酸(BCA) 试剂盒购自上海碧云天公司; Lipofectamine ™2000 转染试剂盒、Annexin V-FITC/PI 细胞凋亡试剂盒购自美国 Invitrogen 公司; KLF8、磷酸化的蛋白酪氨酸激酶 2(phosphorylated Janus kinase2, p-JAK2)、磷酸化的信号转导与转录因子 3(phosphorylated signal transducers and activators of transcription 3 p-STAT3)、细胞周期素 D1(Cyclin D1)和 B 细胞淋巴瘤/白血病-2(B cell lymphoma/lewkmia-2, Bcl-2) 抗体购自美国 Abcam 公司; 酶标仪及流式细胞仪均购自美国 Bio-Rad 公司。
- 1.2 细胞及其培养 人乳腺癌 MCF-7 细胞购自中国科学院上海细胞库; MCF-7 细胞为贴壁细胞 细胞在含有小牛血清及双抗的 RPMI1640 培养基中 ,5% CO_2 、37 $^{\circ}$ 饱和湿度培养箱中传代培养。实验选择生长至对数期的细胞。
- 1.3 细胞转染 MCF-7 细胞进行常规消化后收集细胞 接种细胞于 6 孔板 ,转染前 1 d 更换培养液 (含有血清 不含抗生素) ,待细胞达 $70\% \sim 90\%$ 的生长密度时通过脂质体 Lipofectamine $^{TM}2000$ 转染试

剂盒将合成的干扰 KLF8 表达的 siRNA(KLF8-siR-NA) 转染细胞 同时转染无干扰作用的 siRNA 作为阴性对照组 并设置只加入脂质体的为空白对照组 ,转染过程严格参照试剂盒说明 ,收集转染 48 h 的细胞用于实验研究。

- 1.4 转染 KLF8-siRNA 的 MCF-7 细胞 KLF8 的表达 通过 Western blot 检测转染 KLF8-siRNA 的 MCF-7 细胞 KLF8 的表达。简要步骤如下: PBS 洗涤转染 48 h 的细胞 ,离心后弃掉上清 ,加入全细胞蛋白裂解液于冰上反应 30 min 离心收集上清液 ,上清液即为细胞总蛋白。BCA 试剂盒对蛋白进行定量,蛋白经 $100 \text{ }^{\circ}\text{C}$ 变性 ,取等量变性蛋白进行 SDS-PAGE 分离 电泳结束后切下含有目的蛋白的胶通过电转移至 PVDF 膜 5% 脱脂奶粉在室温条件下封闭转好的 PVDF 膜 2 h ,封闭后置入适当比例的 KLF8 和 GAPDH 一抗溶液中 $4 \text{ }^{\circ}\text{C}$ 缓慢摇动过夜 洗膜 加入二抗 ,室温反应 2 h ,是CL 发光后暗室中将 X 光片曝光 ,冲洗 X 光片 ,拍照扫描 ,成像分析软件分析 KLF8 的相对表达量。
- 1.5 CCK-8 法检测姜黄素联合 KLF8 基因 siRNA 对 MCF-7 细胞活力的影响 以每孔 $100~\mu$ l (约 1×10^4 个细胞) 接种生长至对数期的 MCF-7 细胞于 96 孔板 ,用于调零组细胞的仅仅加入细胞培养液 细胞长满 $50\% \sim 80\%$ 孔底时参照上述方法进行转染,并随机分为阴性对照组(转染无干扰作用的 siRNA)、KLF8-siRNA(转染合成的干扰 KLF8 表达的 siR-NA)、姜黄素组($40~\mu$ mol/L 姜黄素处理细胞)和 KLF8-siRNA+姜黄素组(在转染 KLF8-siRNA 的基础上加入姜黄素),每组设置 5~个平行孔,培养 48~的后,加入 $10~\mu$ l CCK-8 试剂至每孔中,利用调零组调零 酶标仪测定吸光度值(optical density ,OD),以 OD 值反映细胞活力,可以间接反映出细胞的增殖能力。实验重复 3~次。
- 1.6 流式细胞仪检测姜黄素联合 KLF8 基因 siR-NA 对 MCF-7 细胞凋亡的影响 分组及处理方法同 1.5 ,PBS 洗涤各组细胞 ,Binding 缓冲液重悬细胞 利用 Annexin V-FITC 和 PI 荧光染色 ,室温避光反应 15 min 流式细胞仪进行检测。实验重复 3 次。1.7 姜黄素联合 KLF8 基因 siRNA 抑制 JAK2/STAT3 信号通路对乳腺癌细胞活力及凋亡的影响

AG490 作为 JAK2/STAT3 信号通路抑制剂 ,加入浓度为 20 μmol/L ,通过 CCK-8 法及流式细胞仪检测用 KLF8-siRNA + 姜黄素 + AG490 处理细胞相对于 KLF8-siRNA + 姜黄素处理的细胞活力及凋亡率

情况 ,Western blot 检测 p-JAK2、p-STAT3、Cyclin D1 和 Bcl-2 的蛋白表达 ,方法同 1.4。

1.8 统计学处理 采用 SPSS 21.0 软件进行统计分析 ,计量资料用 $\bar{x} \pm s$ 表示 ,多组差异比较采用单因素方差分析 ,两两比较采用 LSD \pm 检验 ,P < 0.05 为差异有统计学意义。

2 结果

2.1 KLF8-siRNA 转染 MCF-7 细胞后 KLF8 的表达 KLF8-siRNA 转染 MCF-7 细胞后 KLF8 的表达结果见图 1。与空白对照组(0.311 ± 0.035) 比较, KLF8-siRNA 组(0.102 ± 0.010) KLF8 的表达显著降低(P<0.05) ,而阴性对照组(0.302 ± 0.032) 和空白对照组 KLF8 的表达差异无统计学意义(P>0.05)。

图 1 KLF8-siRNA 转染 MCF-7 细胞后 KLF8 的表达

- 2.2 姜黄素联合 KLF8-siRNA 对 MCF-7 细胞活力的影响 CCK-8 检测结果显示: KLF8-siRNA 组 (0.562±0.048) 和姜黄素组(0.626±0.052) 的细胞活力均显著低于阴性对照组(0.873±0.074) (P < 0.05) ,高于 KLF8-siRNA + 姜黄素组(0.385±0.041) (P < 0.05)。
- 2.3 姜黄素联合 KLF8-siRNA 对 MCF-7 细胞凋亡的影响 流式细胞仪检测结果显示: KLF8-siRNA 组(12.12 ± 1.02)% 和姜黄素组(10.77 ± 0.96)% 的细胞凋亡率均显著高于阴性对照组(1.56 ± 0.16)%(P < 0.05),低于 KLF8-siRNA + 姜黄素组(18.79 ± 1.35)%(P < 0.05)。见图 2。
- 2.4 姜黄素联合 KLF8-siRNA 对 MCF-7 细胞 p-JAK2、p-STAT3、Cyclin D1 和 Bcl-2 表达的影响 Western blot 检测结果显示: KLF8-siRNA 组和姜黄素组 Cyclin D1、Bcl-2、p-JAK2 和 p-STAT3 的蛋白表达均显著低于阴性对照组(KLF8-siRNA 组: P < 0.05; 姜黄素组: P < 0.05),高于 KLF8-siRNA 4:P < 0.05)。四组间 JAK2 和 STAT3 的蛋白表达差异无统计学意义。见表 1、图 3。
- 2.5 姜黄素联合 KLF8-siRNA 抑制 JAK2/STAT3 信号对MCF-7细胞活力及凋亡的影响 姜黄素、

蛋白	阴性对照组	KLF8-siRNA 组	姜黄素组	KLF8-siRNA + 姜黄素组	F 值
Cyclin D1	0.774 ± 0.078	$0.322 \pm 0.039^{*}$	$0.381 \pm 0.042^{*}$	0.156 ± 0.018	84.838
Bcl-2	0.425 ± 0.046	$0.193 \pm 0.023^{*}$	$0.206 \pm 0.026^{*}$ #	0.104 ± 0.010	61.268
JAK2	0.447 ± 0.041	0.456 ± 0.046	0.432 ± 0.038	0.444 ± 0.043	0.166
p-JAK2	0.276 ± 0.034	$0.115 \pm 0.013^{*}$ #	$0.148 \pm 0.018^{*}$ #	0.041 ± 0.007	68.047
STAT3	0.389 ± 0.040	0.406 ± 0.035	0.408 ± 0.036	0.495 ± 0.041	4.719
p-STAT3	0.188 ± 0.021	0.110 ± 0.010	0.124 ± 0.015	0.031 ± 0.007	61.245

表 1 姜黄素联合 KLF8-siRNA 对 MCF-7 细胞 p-JAK2、p-STAT3、Cyclin D1 和 Bcl-2 表达的影响

与阴性对照组比较: * P < 0.05; 与 KLF8-siRNA + 姜黄素组比较: *P < 0.05

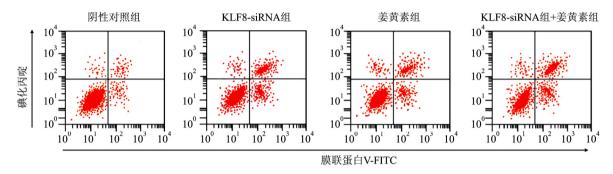


图 2 姜黄素联合 KLF8-siRNA 对 MCF-7 细胞凋亡的影响

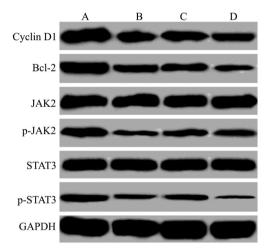


图 3 姜黄素联合 KLF8-siRNA 对 MCF-7 细胞 p-JAK2、 p-STAT3、Cyclin D1 和 Bcl-2 表达的影响

A: 阴性对照组; B: KLF8-siRNA 组; C: 姜黄素组; D: KLF8-siRNA +姜黄素组

KLF8-siRNA 及 JAK2/STAT3 信号抑制剂 AG490 共同处理细胞后 細胞 OD 值及凋亡率检测结果显示: 与 KLF8-siRNA + 姜 黄 素 组 [(0.422 ± 0.043)、(16.68 ± 1.21)%]比较 ,KLF8-siRNA + 姜 黄素 + AG490 组 OD 值(0.301 ± 0.032)显著降低(P<0.05) ,凋亡率显著升高 [(21.15 ± 1.54)%](P<0.05)。见图 4。

2.6 姜黄素联合 KLF8-siRNA 抑制 JAK2/STAT3 信号对 MCF-7 细胞 p-JAK2、p-STAT3、Cyclin D1 和 Bcl-2 表达的影响 姜黄素联合 KLF8-siRNA 抑制 JAK2/STAT3 信号后 MCF-7 细胞 p-JAK2、p-STAT3、Cyclin D1 和 Bcl-2 的蛋白表达结果见表 2、图 5。与 KLF8-siRNA + 姜黄素组比较 ,KLF8-siRNA + 姜黄素 + AC490 组 p-JAK2、p-STAT3、Cyclin D1和 Bcl-2 的蛋白表达均显著降低(P < 0.05)。

表 2 姜黄素联合 KLF8-siRNA 抑制 JAK2/STAT3 信号对 MCF-7 细胞 p-JAK2、p-STAT3、Cyclin D1 和 Bcl-2 表达的影响

组别	KLF8-siRNA +	KLF8-siRNA +
纽加	姜黄素组	姜黄素 + AG490 组
Cyclin D1	0.195 ± 0.020	$0.154 \pm 0.012^*$
Bel-2	0.162 ± 0.018	$0.076 \pm 0.008^*$
p-JAK2	0.152 ± 0.015	$0.098 \pm 0.010^*$
p-STAT3	0.094 ± 0.011	$0.023 \pm 0.006^*$

与 KLF8-siRNA + 姜黄素组比较: * P < 0.05

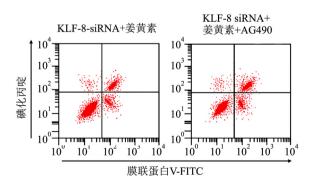


图 4 姜黄素联合 KLF8-siRNA 抑制 JAK2/STAT3 信号对 MCF-7 细胞活力及凋亡的影响

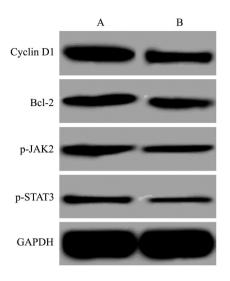


图 5 姜黄素联合 KLF8-siRNA 抑制 JAK2/STAT3 信号对 MCF-7 细胞 p-JAK2、p-STAT3、Cyclin D1 和 Bcl-2 表达的影响 A: KLF8-siRNA + 姜黄素组; B: KLF8-siRNA + 姜黄素 + AG490组

3 讨论

研究[5] 显示,在多种肿瘤中,KLFs 家族的多个 成员与癌基因相关。KLF8 是 KLFs 家族成员之一, 在上皮细胞 - 间充质转化(epithelial cell mesenchyme transformation ,EMT)、细胞致癌性分化、细胞 侵袭和迁移、周期循环等过程中均有重要作用,且在 多种肿瘤中过表达,其过表达与疾病不良预后及发 生相关[6]。也有研究[7]指出抑制 KLF8 的表达可降 低肿瘤的发生发展,如抑制肾癌细胞 KLF8 表达可 降低癌细胞增殖、侵袭及诱导细胞凋亡。KLF8 在乳 腺癌中的研究相对较少,研究[8]显示,KLF8 在乳腺 癌中表达上调,可通过活化基质金属蛋白9促进乳 腺癌的侵袭及转移。本研究旨在抑制 KLF8 对乳腺 癌增殖凋亡的影响。我国中药资源丰富,中药提取 物在肿瘤治疗的研究受到广泛关注,姜黄素是姜黄 的根茎中提取出来的一种酚性色素,目前在肿瘤中 的作用有大量研究,研究[9]显示,姜黄素可降低乳 腺癌的增殖、侵袭、迁移 ,阻滞细胞周期和诱导细胞 的凋亡,但联合使用姜黄素和 KLF8 的 siRNA 是否 能更有效地治疗乳腺癌还未清楚。

鉴于有研究^[2]已证实乳腺癌中 KLF8 存在高表达 本研究检测抑制 KLF8 表达对乳腺癌细胞的影响。由于 RNA 干扰技术能在基因的转录和翻译水平及染色质水平调节基因的表达 ,且表现出很强的序列特异性、有效性 ,在多种肿瘤中研究基因功能时

被应用[10] 因此本研究也选用 RNA 干扰技术抑制 乳腺癌中 KLF8 的表达。将 KLF8 的 siRNA 和姜黄 素共同处理乳腺癌细胞,结果显示 KLF8-siRNA 和 姜黄素均能明显抑制乳腺癌细胞活力和诱导细胞凋 亡,这提示 KLF8 基因和姜黄素能协同用于乳腺癌 的防治。信号转导与转录因子 3(signal transducers and activators of transcription 3, STAT3) 是 STATs 家 族的一员,与细胞增殖、凋亡等生物学特性密切相 关 在多种肿瘤中出现异常活化 STAT3 的异常活化 可引起细胞异常增殖分化,且凋亡受到抑制,目前已 被确认为癌基因 STAT3 引起癌变的机制主要是通 过激活 CyclinD1、Bcl-2、Survivin 等靶基因的一些产 物表达实现[11]。CyclinD1 是一个细胞周期核因子, 可促进细胞的增殖[12]。Bel-2 是 Bel-2 家族成员之 一 抑制其表达可诱导细胞的凋亡[13]。JAK2 处在 STAT3 上游, JAK2 激酶抑制剂 AG490 可抑制 JAK2/STAT3 信号通路 从而使细胞增殖受到抑制, AG490 可抑制包括乳腺癌在内的多种肿瘤的发生 发展^[14]。本研究显示 姜黄素和 KLF8 的 siRNA 均 能下调 p-JAK2 和 p-STAT3 及靶基因 CyclinD1 和 Bcl-2 表达,两者联合下调更明显,抑制 JAK2/ STAT3 信号通路后 相对于联合使用姜黄素和 KLF8 的 siRNA 对细胞的抑制作用和凋亡促进作用更明 显。

综上所述,下调 KLF8 基因表达和姜黄素均能通过抑制 JAK2/STAT3 信号通路降低乳腺癌细胞活力,诱导细胞凋亡,两者联合对细胞活力及凋亡的影响作用更强。该研究可能为乳腺癌的治疗提供了新的途径,值得进一步深入探讨。

参考文献

- [1] Yi X , Zai H , Long X , et al. Krüppel-like factor 8 induces epithe-lial-to-mesenchymal transition and promotes invasion of pancreatic cancer cells through transcriptional activation of four and a half LIM-only protein 2 [J]. Oncol Lett , 2017 , 14(4): 4883 9.
- [2] Li T , Lu H , Shen C , et al. Identification of epithelial stromal interaction 1 as a novel effector downstream of Krüppel-like factor 8 in breast cancer invasion and metastasis [J]. Oncogene ,2014 ,33 (39): 4746 -55.
- [3] Yu G , Wu F , Wang E. KLF8 promotes temozolomide resistance in glioma cells $\it via$ β -catenin activation [J]. Cell Physiol Biochem , 2016 , 38(4): 1596 604.
- [4] Ye M, Zhang J, Zhang J, et al. Curcumin promotes apoptosis by activating the p53-miR-192-5p/215-XIAP pathway in non-small cell lung cancer[J]. Cancer Lett, 2015, 357(1): 196-205.
- [5] Wang G, Li X, Tian W, et al. Promoter DNA methylation is asso-

- ciated with KLF11 expression in epithelial ovarian cancer [J]. Genes Chromosomes Cancer , 2015 , 54(7): 453 62.
- [6] Liang K , Liu T , Chu N , et al. KLF8 is required for bladder cancer cell proliferation and migration [J]. Biotechnol Appl Biochem , 2015, 62(5): 628-33.
- [7] Lin F, Shen Z, Tang L N, et al. KLF8 knockdown suppresses proliferation and invasion in human osteosarcoma cells [J]. Mol Med Rep , 2014 , 9(5): 1613 -7.
- [8] Hsu L S , Wu P R , Yeh K T , et al. Positive nuclear expression of KLF8 might be correlated with shorter survival in gastric adenocarcinoma [J]. Ann Diagn Pathol , 2014 , 18(2): 74 -7.
- [9] Devassy J G , Nwachukwu I D , Jones P J H. Curcumin and cancer: barriers to obtaining a health claim [J]. Nutr Rev , 2015 , 73 (3): 155 65.
- [10] Lu W , Fu Z , Wang H , et al. Peroxiredoxin 2 knockdown by RNA interference inhibits the growth of colorectal cancer cells by down-

- regulating Wnt/ β -catenin signaling [J]. Cancer Lett , ,2014 ,343 (2): 190 9.
- [11] Li W , Saud S M , Young M R , et al. Cryptotanshinone , a Stat3 inhibitor , suppresses colorectal cancer proliferation and growth in vitro [J]. Mol Cell Biochem , 2015 , 406(1-2): 63 73.
- [12] 王文涛, 唐兆华, 霍 钢,等. EPO 通过上调 CyclinD1 表达促进胶质母细胞瘤的体外增殖 [J]. 重庆医科大学学报, 2016, 41(8): 787-91.
- [13] Sharifi S , Barar J , Hejazi M S , et al. Roles of the Bcl-2/Bax ration, caspase-8 and 9 in resistance of breast cancer cells to paclitaxel [J]. Asian Pac J Cancer PrevAsian Pac J Cancer Prev , 2014 , 15 (20): 8617 22.
- [14] Liu X , Xiao Q , Bai X , et al. Activation of STAT3 is involved in malignancy mediated by CXCL12-CXCR4 signaling in human breast cancer [J]. Oncol Rep , 2014 , 32(6): 2760 -8.

Effect of curcumin combined with KLF8 gene siRNA on the growth inhibition of breast cancer cells by regulating of STAT3 signaling pathway

Li Xin Niu Bing Li Qinghui et al

(Dept of Breast Surgery , Zhengzhou People's Hospital , Zhengzhou 450003)

Abstract Objective To investigate the effect of curcumin combined with KLF8 gene siRNA on the growth inhibition of breast cancer cells by regulating of JAK2/STAT3 signaling pathway. Methods Human breast cancer MCF-7 cells were randomly divided into negative control group, KLF8-siRNA group, curcumin group and KLF8-siRNA + curcumin group, AG490 as a AK2/STAT3 signaling pathway inhibitor; CCK-8 kit and flow cytometry were used to detect the cell viability and apoptosis rate after cells were treated for 48 h; JAK2/STAT3 signal pathway of p-JAK2 and p-STAT3 and its target gene Cyclin D1 and Bcl-2 protein expression were detected by Western blot. Re-The expression of KLF8 in MCF-7 cells transfected with KLF8-siRNA was significantly decreased. The cell viability and protein expression of Cyclin D1, Bcl-2, p-JAK2 and p-STAT3 in KLF8-siRNA group and curcumin group were significantly lower than negative. In the control group, higher than KLF8-siRNA + curcumin group, the apoptosis rate was significantly higher than that of the negative control group, lower than KLF8-siRNA + curcumin group (P < 0.05), cells co-treated curcumin, KLF8-siRNA and JAK2/STAT3 signal inhibitor AG490 displayed that cell viability was significantly lower than that of curcumin and KLF8-siRNA, and the apoptosis rate was increased. The expression of Cyclin D1, Bcl-2, p-JAK2 and p-STAT3 was decreased (P < 0.05). Conclusion Down regulation of KLF8 gene expression and curcumin can reduce the activity and induce apoptosis of breast cancer cells by inhibiting of JAK2/STAT3 signaling pathway. The combination of them has stronger effect on cell viability and apoptosis.

Key words KLF8 gene; curcumin; breast cancer; apoptosis; JAK2/STAT3 signaling pathway