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IRF3 suppress the secretion of inflammatory cytokines

in the hepatic stellate cell induced by LPS
Liu Yunjie' Cheng Wei’ Li Li’ et al
(' Pharmacy Intravenous Admixture Service The Third Affiliated Hospital of Anhui Medical University
Hefei Binhu Hospital Hefei 230061 ;>PLA 92752 Troops Health Team Hefei 231600
*School of Pharmacy Anhui Medical University Hefei 230032)

Abstract Objective To investigate the effect of IRF3 on the secretion of inflammatory cytokines IL.-6 and TNF-o
in hepatic stellate cells induced by LPS. Methods Transient transfection of plasmid pcDNA34RF3 into LX2 of
human hepatic stellate cells by liposome was used to detect the transfection efficiency and the expression of inflam—
matory factor [L-6 and TNF-o was detected by Western blot and qRT-PCR. Results The results of gRT-PCR and
Western blot showed that the expression of TNF-o and IL-6 in LX2 cells stimulated with 2 pg/ml LPS for 12 h was
significantly lower than that in normal control group while the expression of TNF-o and IL-6 increased significant—
ly. However after pcDNA3 was transfected into LX2 cells for 12 h the expression levels of inflammatory factors
IL-6 and TNF-« in pcDNA3 transfected group were significantly inhibited in LX2 cells compared with the control
group. Conclusion IRF3 can inhibit the expression of inflammatory cytokines IL-6 and TNF-o in X2 induced
by LPS.
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Effects of glycine transporter 1 inhibitor

M22 on cognitive impairment in epileptic mice
Lin Lifeng Liang Wei Liu Zhou et al
(Dept of Neurology The Affiliated Hospital of Guangdong Medical University Zhanjiang 524001)

Abstract Objective To study the effects of glycine transporter 1 (GlyT1) inhibitor M22 on cognitive impairment
in epileptic mice induced by amyl four nitrogen. Methods According to the weight 50 C57BL/6 mice were ran—
domly divided into three groups: blank control group (Control n =10) model group (Model n =20) M22
group (M22 n =20). Chronic ignited epilepsy model were prepared by intraperitoneal injection of PTZ (30 mg/
kg) in model group and M22 mice while the control group was injected saline continuous intraperitoneal injection
of four nitrogen for 2 weeks and at the same time by intragastric administration of M22 mice 40 mg/ (kg * d) M22.

After two weeks the learning and memory function was evaluated by Morris water maze test. Then the mice were
sacrificed and their hippocampus were stained with HE stainning and the apoptosis related proteins in the cerebral
cortex of mice were measured and the apoptosis of neurons was evaluated. Results The results of Morris water
maze test showed that epileptic seizures induced cognitive impairment in mice while M22 could improve their cog—
nitive impairment. HE staining showed that neurons in the model group were obviously apoptosis while M22 exer—
ted protective effect. Apoptosis related protein assay showed that M22 had a significant protective effect on the neu—
ronal apoptosis induced by epilepsy. Conclusion Glycine transporter 1 inhibitor M22 can significantly improve the
learning and memory ability of epileptic mice inhibit neuronal apoptosis and provide new options for patients with
epilepsy or intractable epilepsy.
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