网络出版时间: 2021 - 4 - 2 16:11 网络出版地址: https://kns.cnki.net/kcms/detail/34.1065. R. 20210402. 1340. 020. html

肝细胞内相关 mRNA 抑制 HBV 复制与表达的功能验证

黄 鹏 邱 华 范春娇 毛德文 李 旺 蒙荫杰 何锦轶

摘要 目的 验证肝细胞内抑制乙型肝炎病毒(HBV)复制 与表达的相关 mRNA。方法 通过慢病毒介导的方式将过 氧化物酶体增殖物激活受体 $\alpha(PPAR\alpha)$ 、核因子 I/B(NFIB) 及白细胞介素-8(IL-8) 基因转入 HepG2. 2. 15 及 HBV 全基 因组 1.3 倍体 HepG2(HBV1.3P-HepG2) 细胞模型中,以空 白对照(NC) 组为对照 ,转染 48 h 后采用 qPCR 检测 mRNA 表达及 HBV DNA 复制水平 化学发光法检测细胞上清液中 HBsAg 和 HBeAg 的表达 免疫荧光法检测细胞内 HBsAg 的 表达。结果 在 HepG2. 2. 15 和 HBV1. 3P-HepG2 细胞模型 中 PPARα 能够促进 HBV DNA 复制和 HBsAg 表达 其 HBV DNA 的表达分别是 NC 组的 1.46 倍和 1.27 倍(P<0.05)。 NFIB 可以抑制 HBV DNA 复制和 HBsAg 表达 其 HBV DNA 的表达分别是 NC 组的 0.76 和 0.55 倍(P<0.05)。IL-8 能 够促进 HBV DNA 复制和 HBsAg 表达 其 HBV DNA 的表达 分别是 NC 组的 1.54 倍和 1.62 倍(P<0.05)。结论 肝细 胞内 PPARα 和 IL-8 能够促进 HBV 复制与表达 ,NFIB 可以 抑制 HBV 复制与表达,可为后续研究提供实验室依据。

关键词 乙型肝炎病毒; 信使核糖核酸; 肝细胞; 慢病毒转染

2020 - 11 - 12 接收

基金项目: 国家自然科学基金(编号: 81660827、81860889); 中国博士后科学基金面上资助项目(编号: 2019M653312); 广西重点研发计划项目(编号: 2017AB45166); 第二批广西高层次骨干人才培养139 计划(编号: 桂卫科教发〔2018〕22号)

作者单位:1 广西中医药大学研究生院 南宁 530001

2 广西中医药大学第一附属医院肝病科 南宁 530023

作者简介: 黄 鹏, 男, 硕士研究生;

邱 华 男 博士 副教授 硕士研究生导师 责任作者 E-mail: qiuhua8899@163.com

技术

中图分类号 R 512.62

文献标志码 A 文章编号 1000 – 1492(2021) 05 – 0779 – 07 doi: 10.19405/j. cnki. issn1000 – 1492.2021.05.020

乙型肝炎病毒(hepatitis B virus ,HBV) 为嗜肝 DNA 病毒,全世界大约有 2.57 亿慢性 HBV 感染 者[1]。HBV 持续感染不仅引起慢性乙型肝炎(chronic hepatitis B CHB) ,也会显著增加肝硬化、肝衰竭 及肝癌的发生风险 抗病毒是 HBV 相关慢性肝病治 疗与防控的关键[2]。干扰素和核苷(酸)类似物目 前被认为是两类抗 HBV 药物 但两者均不能彻底清 除共价闭合环状 DNA (covalently closed circular DNA cccDNA) [3]。前期临床与实验研究[4-5]表明, 白花香莲解毒颗粒在抗 HBV 方面具有较好的效果, 但其抗 HBV 机制尚未完全明确。课题组根据前期 mRNA 芯片筛选结果及 miRNA 的靶基因预测结果, 选择过氧化物酶体增殖物激活受体 α(peroxisome proliferator activated receptorsα PPARα)、核因子 I/B (nuclear factor I/B ,NFIB) 和白细胞介素-8(interleukin-8 ,IL-8) 代表白花香莲解毒颗粒抑制 HBV 的靶 mRNA 进行抗 HBV 的体外验证实验[6]。该研究采 用慢病毒基因转染技术,通过 HepG2.2.15 和 HBV1. 3P-HepG2 细胞模型,验证 PPARα、NFIB 和 IL-8 mRNA 表达对 HBV 复制与表达的影响,为进一 步明确白花香莲解毒颗粒抑制 HBV 复制与表达的 机制及探寻 HBV 新的治疗靶点提供实验室依据。

by tube-forming experiment. **Results** There were (20. 80 \pm 2. 49) VN in the PBS group (27. 60 \pm 3. 17) VN in the medium-dose MYDGF group , and (28. 60 \pm 3. 27) VN in the high-dose MYDGF group. The differences between the medium-dose MYDGF group and the high-dose MYDGF group were statistically significant compared with the PBS group (P < 0.05). VA/CAM values were respectively (23. 53 \pm 1. 96)% in the PBS group, (27. 87 \pm 3. 10)% in the medium-dose MYDGF group, and (29. 26 \pm 2. 73)% in the high-dose MYDGF group. The differences between the medium-dose MYDGF group and the high-dose MYDGF group were statistically significant compared with the PBS group (P < 0.05). Compared with the control group, MYDGF (100 ng/ml) could promote the proliferation of HUVECs (P < 0.05) and tubulization (P < 0.05), and the difference was statistically significant. **Conclusion** MYDGF can promote angiogenesis in chorioallantoic membrane of chicken embryo. MYDGF can enhance the proliferation and tubulization of HUVECs.

Key words myeloid-derived growth factor; chicken embryo allantoic membrane; angiogenesis

1 材料与方法

材料 HepG2 细胞、HepG2. 2. 15 细胞、293A 细胞(上海诺百生物科技有限公司),DH5α 感受态 细胞(上海唯地生物技术有限公司); 0.05% Trypsin、lipofectamine 2000 购自美国 Invitrogen 公司; DMEM 购自美国 HyClone 公司; 凝胶回收试剂盒购自 美国 Axygen 公司: NheI/AscI 内切酶购自加拿大 Fermentas 公司; 胎牛血清、Opti-MEM、MEM 培养基购自 美国 Gibco 公司; 包装质粒 Packaging Mix 购自美国 Biomics Biotech 公司; SYBR Green PCR Master Mix 购 自美国 Promega 公司; Mouse Anti-HBsAg (H2F4) 抗 体、Anti-Mouse IgG H&L (PE/Cy5.5) preadsorbed 购 自比利时 Gentaur 公司; HBsAg、HBeAg 化学发光法 检测试剂盒购自上海东寰生物科技有限公司 批号: 20181103; PCR 引物合成及测序委托上海诺百生物 科技有限公司完成。酶联免疫检测仪购自美国 Rayto 公司; BSL-II 级生物安全柜购自山东博科生物 产业有限公司; 台式冷冻离心机购自力康生物医疗 公司: 荧光定量 PCR 仪购自南京科信仪器仪表制造 有限公司; CO。培养箱购自上海润度生物科技有限 公司; 荧光显微镜购自意大利 Sinico 公司。

1.2 方法

1.2.1 mRNA 慢病毒表达载体的制备

1.2.1.1 各基因 CDS 序列的扩增 在 NCBI 网站 查询 NFIB (NM_005596)、PPAR α (NM_005036)和 IL-8 (NM_000584) 序列 ,根据 In-fusion 技术设计上 述基因的引物 ,并扩增基因的 CDS 序列 ,引物序列 如表 1。用 HepG2 基因组作为模板 ,用表 1 引物将基因 CDS 序列扩增 ,然后将扩增的序列插入慢病毒表达载体 pL6. 3 -CMV -GFPa1-IRES -MCS 中 ,获得

表 1 基因 CDS 序列扩增引物

基因	CDS 长度 (bp)	引物序列(5´-3´)
NFIB	1 263	F: AATTAAGGAAGCTAGCATGATGTATTCTC CCATCTGTCTCAC
		R: TAAACCCAAGGCGCGCCCTAGCCCAGGT ACCAGGACTGGCT
PPAR_{α}	1 407	F: TTAATTAAGGAAGCTAGCATGGTGGACAC GGAAAGCC
		R: TTTAAACCCAAGGCGCGCCTCAGTACATG TCCCTGTAGATCTCCT
IL-8	300	F: TAATTAAGGAAGCTAGCATGACTTCCAAG CTGGCCG
		R: TTAAACCCAAGGCGCGCCTTATGAATTCT CAGCCCTCTTCAAAAACT

mRNA 慢病毒质粒表达载体。扩增体系: 10 × PCR Buffer for KOD 5 µl,2 mmol/L dNTP 5 µl,25 mmol/L MgSO4 3 μl、引物 F(10 mmol/L)1.5 μl、引物 R(10 mmol/L) 1.5 μl、模板 1 ng、KOD 2.5 units 加水至 50 μl; PCR 扩增条件为: 94 ℃、2 min ,94 ℃、15 s ,60 ℃、30 s 68 ℃、1 kb/min 30 个循环 68 ℃、10 min。 1.2.1.2 慢病毒表达载体酶切及 In-fusion 连接 将 pL6.3-CMV-GFPa1-IRES-MCS 载体通过 NheI/ AscI 双酶切 ,酶切体系: 1 × Buffer 5 μl、5 μg/50 μl 质粒 1 μg、NheI 2 μl、AscI 2 μl 加 ddH。O 至 50 μl。 酶切产物经 0.8% 琼脂糖凝胶电泳,切胶回收,得到 线性化 pL6. 3-CMV-GFPa1-IRES-MCS 载体。 pL6. 3-CMV-GFPa1-IRES-MCS 线性化载体和 HBV DNA-1.3P 通过 Infusion 连接后转化 DH5α 感受态细胞, 连接体系: 5 × CE II Buffer 4 µl、pL6. 3-CMV-GFPa1-IRES-MCS 线性化载体 50~200 ng、HBV DNA-1.3P 20~200 ng、Exnase® II 2 μl 加 ddH₂O至 20 μl 混 匀。选择转化的克隆进行 PCR 鉴定 、阳性克隆委托 测序公司测序鉴定。

1.2.2 mRNA 慢病毒包装及滴度测定 293A 细胞 经 0.05% Trypsin 消化并铺在 10 cm 培养皿中 细胞 数为 6×10^6 个/皿 培养过夜。转染前 将培养皿内完全培养液换成 5 ml Opti-MEM 培养液。在 5 ml EP 管中加入 1.5 ml Opti-MEM、9 μ g Packaging Mix 和 3 μ g 慢病毒表达质粒 混匀;在另一5 ml EP 管中加入 1.5 ml Opti-MEM 和 36 μ l lipofectamine 2000 混匀。把质粒和 lipofectamine 2000 稀释液混匀 20 min 后 再将质粒脂质体复合物加入到培养皿中充分混匀 培养 $4\sim6$ h 后换培养液 培养 48 h 离心后收集上清液 过滤 获得慢病毒原液。使用荧光法测定病毒活性滴度 171。

- 1. 2. 3 HepG2 和 HepG2. 2. 15 细胞 MOI 测定 293T 细胞用胰酶消化后制成悬液 ,计算所需病毒液体积 ,每个感染复数 (multiplication of infection , MOI) 梯度设加 8% 聚凝胺组和不加 8% 聚凝胺组 ,将所需的病毒液加至靶细胞中 ,对照为慢病毒侵染 293 A 细胞 ,MOI 值 = 1 ,加 8% 聚凝胺 ,放在培养箱中培养 48、72 h 后 ,观察细胞存活状态和侵染后阳性细胞比例并拍照。
- 1.2.4 HepG2 和 HepG2. 2. 15 慢病毒侵染及转染病毒侵染前一天将靶细胞接种至 96 孔板(第2 天细胞密度以 60% ~70% 为宜)。将病毒液冰上融解后 根据测定的 MOI 值用含 2% FBS 的 MEM 培养基稀释 加 8 μg/ml 的 Polybrene 混匀后将配置好的病

毒液加入细胞中,培养箱中培养 4~6 h 后换液,观察细胞生长状态和荧光蛋白表达情况并拍照。把293 A 细胞接种于 12 孔板中培养,去除原来的培养液,换为 opti-MEM,接着配置 DNA 或 RNA 与脂质体的复合物,将其加到细胞中孵育 4~6 h 后换液继续培养 24 h 后观察转染情况。

- 1.2.5 qPCR 检测 HBV DNA 复制及结果分析 收集各组细胞,抽提总 DNA。HBV DNA 的检测引物(上游引物: CTCGTGGTGGACTTCTCTC,下游引物: CAGCAGGATGAAGAGGAA);以18 S rDNA 为内参,扩增引物为引物 18S-F(序列: GAATTGACG-GAAGGGCACCAC)和 18S-R(序列: AAGAACGGC-CATGCACCACCA)。基因倍数关系以 $R=2^{-\Delta\Delta Cl}$ 表示。参考前期反应体系 $R=2^{-\Delta\Delta Cl}$ 表示。
- 1.2.6 化学发光法检测细胞上清液中 HBsAg 和 HBeAg 表达量 参照前期实验方法^[8] ,收集细胞上清液 ,测定 HBsAg 和 HBeAg 表达量 ,检测方法根据 HBsAg、HBeAg 试剂盒说明书。
- 1.2.7 免疫荧光法检测细胞内 HBsAg 表达量 参

照前期实验方法^[8] 将细胞爬片 0.25% TRITON X-100/PBS 孵育 5 min 使细胞通透 用 10% BSA/PBS , 37 ℃下孵育 30 min 再用 3% BSA/PBS 稀释浓度为 1:100 的 Mouse Anti-HBsAg (H2F4) 抗体 37 ℃下孵育 2 h 3% BSA/PBS 稀释浓度为 1:200 的 Anti-Mouse IgG H&L (PE/Cy5.5) preadsorbed 37 ℃下避光孵育 45 min , 荧光显微镜观察并拍照 ,将照片用Image-Pro Plus 软件计算平均吸光度和分析荧光的强弱。

1.3 统计学处理 运用软件 SPSS 20.0 进行统计分析 计量资料以 $\bar{x} \pm s$ 表示,组间比较采用成组设计的 t 检验 不符合正态分布或方差不齐采用成组设计的秩和检验 P < 0.05 为差异有统计学意义。

2 结果

2.1 mRNA 慢病毒表达载体的制备 以 HepG2 基 因组为模板扩增 PPARα、NFIB 和 IL-8 mRNA 的 CDS 序列,然后将该序列插入慢病毒表达载体 pL6. 3-CMV-GFPa1-IRES-MCS 中,并对这些载体进 行测序验证,获得构建正确的 pL6. 3-CMV-GFPa1-IRES-NFIB、 pL6. 3-CMV-GFPa1-IRES-PPARα 和 pL6. 3-CMV-GFPa1-IRES-IL-8 载体,见图 1。

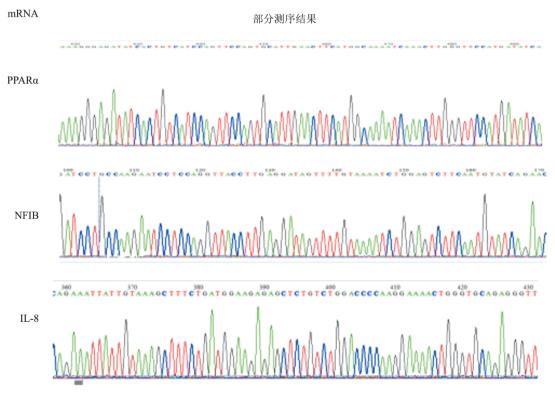


图 1 pL6. 3-CMV-GFPa1-IRES-NFIB、pL6. 3-CMV-GFPa1-IRES-PPARα 和 pL6. 3-CMV-GFPa1-IRES-IL-8 载体的测序图谱

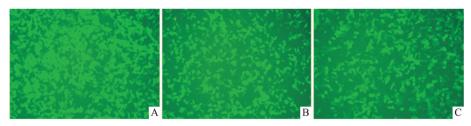


图 2 慢病毒滴度测定荧光图 ×100

A: 慢病毒 pL6. 3-CMV-GFPa1-IRES-NFIB 侵染 293A 细胞; B: 慢病毒 pL6. 3-CMV-GFPa1-IRES-PPARα 侵染 293A 细胞; C: 慢病毒 pL6. 3-CMV-GFPa1-IRES-IL8 侵染 293A 细胞

- 2.2 mRNA 表达慢病毒包装 将 pL6. 3-CMV-GF-Pa1-IRES-NFIB、pL6. 3-CMV-GFPa1-IRES-PPAR α 和 pL6. 3-CMV-GFPa1-IRES-IL-8 质粒分别和 PSPAX2、PMD2G 质粒共转染 293A 细胞后包装病毒,收集病毒液 浓缩。采用荧光法测定慢病毒滴度 实验分别用 0. 4 μ l 慢病毒液侵染 1×10^5 个细胞,pL6. 3-CMV-GFPa1-IRES-NFIB 感染细胞比例达到 60% ,其滴度为 $1\times 10^5\times 60\%\times 10^3/0$. $4=1.5\times 10^8$ TU/ml;pL6. 3-CMV-GFPa1-IRES-PPAR α 和 pL6. 3-CMV-GFPa1-IRES-IL-8 病毒液感染细胞比例达到 40% ,其滴度为 1×10^8 TU/ml。见图 2。
- 2.3 HepG2. 2. 15、HBV1. 3P-HepG2 细胞内各组 mRNA 相对表达量的比较 将 PPAR α 、NFIB 及 IL-8 基因分别转入 HepG2. 2. 15、HBV1. 3P-HepG2 细胞中 将 NC 作为对照组 转染 48 h 收集细胞沉淀。 秩和检验结果显示,在以上 2 种不同细胞中,NC 组与 PPAR α 组比较,差异有统计学意义(P < 0.05); NC 组与 NFIB 组比较,差异有统计学意义(均 P < 0.05); NC 组与 IL-8 组比较,差异有统计学意义(均 P < 0.05); NC 组与 IL-8 组比较,差异有统计学意义(均 P < 0.05)。 见表 2。

表 2 HepG2. 2. 15、HBV1. 3P-HepG2 细胞内 各组 mRNA 相对表达量的秩和检验(n=6)

细胞类型	中位数	25 百分位数	75 百分位数	Z值	P值
HepG2. 2. 15 细胞					
NC	1.005	0.975	1.055	-2.882	0.002
$PPAR_{\alpha}$	691.185	687.003	735.055		
NC	0.995	0.968	1.025		
NFIB	2 222. 220	2 171.438	2 258. 220		
NC	0.990	0.958	1.015		
IL-8	346.995	337.040	356.880		
HBV1.3P-HepG2 细胞					
NC	0.990	0.958	1.035		
$PPAR_{\alpha}$	548.873	551.315	570.708		
NC	1.010	0.958	1.040		
NFIB	429.970	418.058	436.095		
NC	1.005	0.990	1.023		
IL-8	528.575	510.400	541.725		

- 2.4 HepG2. 2. 15、HBV1. 3P-HepG2 细胞内各组 HBV DNA 相对表达量的比较 PPARα 分别转染 HepG2. 2. 15、HBV1. 3P-HepG2 细胞后能促进 HBV DNA 的复制 其表达程度分别是 NC 组的 1. 46 倍和 1. 27 倍 差异有统计学意义(P < 0. 05); NFIB 分别转染 HepG2. 2. 15、HBV1. 3P-HepG2 细胞后可以抑制 HBV DNA 的复制 ,其表达程度分别是 NC 组的 0. 76 倍和 0. 55 倍 ,差异有统计学意义(P < 0. 05、P < 0. 001); IL-8 分别转染 HepG2. 2. 15、HBV1. 3P-HepG2 细胞后可以促进 HBV DNA 的复制 ,其表达程度分别是 NC 组的 1. 54 倍和 1. 62 倍 ,差异有统计学意义(P < 0. 05、P < 0. 001)。 见表 3。
- 2.5 HepG2. 2. 15、HBV1. 3P-HepG2 细胞上清液中各组 HBsAg、HBeAg 表达量的比较 与 NC 组比较 ,在 HepG2. 2. 15、HBV1. 3P-HepG2 细胞上清液中 ,NFIB 转染后可以下调 HBsAg 和 HBeAg 表达 ,差异有统计学意义(P < 0.001、P < 0.05);在 HepG2. 2. 15、HBV1. 3P-HepG2 细胞上清液中, PPAR α 和 IL-8 转染后可以上调 HBsAg 和 HBeAg 表达,差异有统计学意义(均 P < 0.05)。见表 4、5。

表 3 HepG2. 2. 15、HBV1. 3P-HepG2 细胞内各组 HBV DNA 相对表达量比较(n=3 $\bar{x}\pm s$)

细胞类型	HBV DNA 相对表达量	t 值	P值
HepG2.2.15 细胞			
NC	1.002 ± 0.067	6.354	0.003
$PPAR\alpha$	1.461 ± 0.027 #		
NC	1.002 ± 0.067	4.061	0.015
NFIB	0.650 ± 0.055 [#]		
NC	1.002 ± 0.067	7.073	0.002
IL-8	$1.540 \pm 0.036^{\#}$		
HBV1.3P-HepG2 细胞			
NC	1.000 ± 0.024	5.185	0.007
$PPAR\alpha$	$1.269 \pm 0.046^{\#}$		
NC	1.000 ± 0.024	11.402	< 0.001
NFIB	$0.553 \pm 0.031^{###}$		
NC	1.000 ± 0.024	14.445	< 0.001
IL-8	$1.625 \pm 0.036^{###}$		

与对照组比较: #P < 0.05 , ### P < 0.001

表 4 HepG2. 2. 15、HBV1. 3P-HepG2 细胞上清液中 各组 HBsAg 表达量比较(n=3 $\bar{x} \pm s$)

细胞类型	HBsAg 表达量(IU/ml)	t 值	P 值
HepG2.2.15 细胞			
NC	46.68 ± 0.52	6.197	0.003
$PPAR_{\alpha}$	62.20 ± 2.45 [#]		
NC	46.68 ± 0.52	19.871	< 0.001
NFIB	$29.67 \pm 0.68^{\#\#}$		
NC	46.68 ± 0.52	7.556	0.002
IL-8	$58.39 \pm 1.46^{\#}$		
HBV1.3P-HepG2 细胞			
NC	102.22 ± 5.89	5.285	0.006
$PPAR\alpha$	$146.69 \pm 6.01^{\#}$		
NC	102.22 ± 5.89	5.355	0.006
NFIB	67.57 ± 2.68 [#]		
NC	102.22 ± 5.89	3.671	0.021
IL-8	126.57 ± 3.05 [#]		

与对照组比较: #P < 0.05 , ### P < 0.001

表 5 HepG2. 2. 15、HBV1. 3P-HepG2 细胞上清液中 各组 HBeAg 表达量比较 $(n=3 \ \bar{x} \pm s)$

——————— 细胞类型	HBeAg 表达量(NCU/ml)	t 值	P 值
HepG2.2.15 细胞			
NC	35.20 ± 0.70	13.053	< 0.001
$PPAR_{\alpha}$	$46.74 \pm 0.54^{###}$		
NC	35.20 ± 0.70	16.333	< 0.001
NFIB	$21.15 \pm 0.50^{###}$		
NC	35.20 ± 0.70	7.962	0.001
IL-8	43.31 ± 0.74		
HBV1.3P-HepG2 \$	田胞		
NC	54.10 ± 4.55	3.372	0.028
$PPAR_{\alpha}$	71.29 ± 2.30 [#]		
NC	54.10 ± 4.55	2.982	0.041
NFIB	$38.06 \pm 2.87^{\#}$		
NC	54.10 ± 4.55	2.836	0.047
IL-8	$68.01 \pm 1.83^{\#}$		

与对照组比较: #P<0.05 ,###P<0.001

2. 6 免疫荧光检测 mRNA 在 HepG2. 2. 15、HBV1. 3P-HepG2 细胞内对 HBsAg 表达的影响与 NC 组比较 ,NFIB 转染 HepG2. 2. 15、HBV1. 3P-HepG2 细胞后 HBsAg 表达下降 ,差异有统计学意义 (P < 0.05); PPAR α 和 IL-8 转染 HepG2. 2. 15、HBV1. 3P-HepG2 细胞后 HBsAg 表达上调 ,差异有统计学意义(P < 0.05)。见表6 图 3、4。

3 讨论

HBV 是用超螺旋结构 cccDNA 把其基因组物质储存起来,在细胞核内能够持久存在,而且宿主免疫

表 6 免疫荧光检测 mRNA 在 HepG2. 2. 15、HBV1. 3P-HepG2 细胞内对 HBsAg 表达的影响(n=3 $\bar{x} \pm s$)

细胞类型	细胞内 HBsAg 表达量	t 值	P 值
HepG2.2.15 细胞			
NC	220 599 ± 25 148	2.951	0.042
$PPAR\alpha$	338 462 ±31 027#		
NC	220 599 ± 25 148	3.279	0.031
NFIB	115 604 ± 19 826#		
NC	220 599 ± 25 148	2.925	0.043
IL-8	339 985 ± 32 154#		
HBV1.3P-HepG2 细胞			
NC	$321\ 023\ \pm 24\ 107$	4.436	0.011
$PPAR_{\alpha}$	479 355 ± 26 319#		
NC	$321\ 023\ \pm24\ 107$	4.715	0.009
NFIB	172 207 ± 20 376#		
NC	$321\ 023 \pm 24\ 107$	3.532	0.024
IL-8	453 023 ± 28 557#		

与对照组比较: #P < 0.05

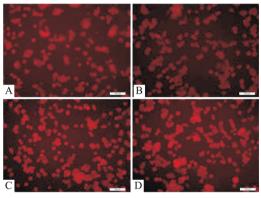


图 3 免疫荧光检测 mRNA 在

HepG2. 2. 15 细胞内对 **HBsAg** 表达的影响 ×100

A: NC 组; B: NFIB 转染 HepG2. 2. 15 细胞后 HBsAg 表达量; C: PPARα 转染 HepG2. 2. 15 细胞后 HBsAg 表达量; D: IL-8 转染 HepG2. 2. 15 细胞后 HBsAg 表达量

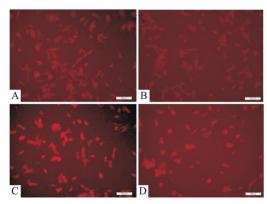


图 4 免疫荧光检测 mRNA 在 HBV1. 3P-HepG2 细胞内 对 HBsAg 表达的影响 ×100

A: NC 组; B: NFIB 转染 HBV1. 3P-HepG2 细胞后 HBsAg 表达量; C: PPARα 转染 HBV1. 3P-HepG2 细胞后 HBsAg 表达量; D: IL-8 转染 HBV1. 3P-HepG2 细胞后 HBsAg 表达量 应答不能干扰它。干扰素和核苷(酸)类似物这两大抗病毒药都不能干预到 cccDNA,这成为 HBV 感染很难治愈的关键因素。宿主与病毒通过长时间的相互竞争,使得其抗病毒机理变得复杂。因此,在研究 HBV 与宿主之间关系的同时,尤其需要关注和有必要从宿主肝细胞内探寻药物治疗的新靶点。

mRNA 是由 DNA 的一条链作为模板转录而来的 携带遗传信息且能指导蛋白质合成的一类单链核糖核酸。越来越多的研究 $^{[9]}$ 表明 ,mRNA 在 HBV 复制中扮演着重要的角色。过氧化物酶体增殖物激活受体 (peroxisome proliferators-activated receptors , PPARs) 根据功能不同 将其分为 PPAR $_{\alpha}$ 、PPAR $_{\beta}$ / $_{\delta}$ 和 PPAR $_{\gamma}$ 3 种亚型。研究 $^{[10]}$ 表明 PPAR $_{\alpha}$ 反义序列 PPAR $_{\alpha}$ -2 能够使细胞中的 PPAR $_{\alpha}$ mRNA 和蛋白水平降低 ,随着剂量的增加 ,抑制肝癌细胞中 HBsAg 和 HBeAg 的水平越明显。Chen et al $^{[11]}$ 报道 miR-141-3p 能通过靶向 PPAR $_{\alpha}$ mRNA ,将 HBV 启动子的活性减少 ,从而抑制 HBV 复制。

NFIB 属于核因子-I (nuclear factor-I,NF-I) 家族,NFIB 是其成员之一,参与各种细胞的基因转录和调控。HBV 基因组中有 3 个 NF-I 结合位点可以被识别出来,且各自发挥着不同的功能。许多细胞与 HBV 基因启动子含有 NF-I 的结合点,表明 HBV 基因启动子的有效活化需要 NF-I 的参与 缺失部分或整个 NF-I 结合点导致 HBVS 基因的转录降低 5~10 倍^[12]。Guo et al^[13]发现 NFIB 对 HBV 增强子和核心启动子(EN I-Cp) 具有抑制作用,同时还能降低 HBsAg 和 HBeAg 的表达,miR372 可以与 NFIB相结合,从而阻止 NFIB 抑制 HBV 复制的作用。

IL-8 是肝细胞内重要的炎症趋化因子,迄今为止尚不清楚 IL-8 在 HBV 致病过程中的作用。穆玄玄等^[14]报道 HBV 相关慢加急性肝衰竭患者肝组织及外周血 IL-8 水平显著升高,且血清 IL-8 水平与患者肝脏炎症损伤和病情严重程度有关。近年来研究^[15]表明,在 HBV 感染早期阶段,IL-8 可以促进HBV 复制,IL-8 过表达可导致肝细胞内产生许多HBV 转录因子,可以促进 CHB 患者发生慢性化和重症化的风险。

本研究通过慢病毒将 PPAR α 、NFIB 及 IL-8 转入 HepG2. 2. 15 和 HBV1. 3P-HepG2 细胞模型中 秩和检验结果显示 在以上 2 种不同细胞中 ,NC 组与

PPARα组、NFIB组、IL-8组两两比较,差异均有统 计学意义,说明 PPARα、NFIB 及 IL-8 在上述细胞模 型中能够正常表达。mRNA 干预 HBV 功能验证显 示 、PPARα、IL-8 能够增加 HBV DNA 表达量及上调 HBsAg、HBeAg 表达水平,而 NFIB 能够减少 HBV DNA 表达量及下调 HBsAg、HBeAg 表达水平。随后 采用免疫荧光检测 mRNA 在2 个细胞模型内对 HBsAg 表达的影响,结果显示,NFIB 转染 HBV1.3P-HepG2 后 HBsAg 表达下降 ,PPARα 和 IL-8 转染后 HBsAg 表达上调。本研究在细胞模型内外同时做 了验证 因此得出结论 肝细胞内 PPARα 和 IL-8 是 一种促进 HBV 复制的 mRNA ,而 NFIB 是一种抑制 HBV 复制的 mRNA,这与吴小桃 等[10]、Guo et al^[13]、穆玄玄 等^[14]的研究结果有相似之处。与上 述研究不同的是,本实验在 HepG2. 2. 15 细胞中验 证的同时,选择前期成功构建的 HBV1. 3P-HepG2 模型进行验证,该模型不仅能够稳定表达 HBV 标志 物 而且 HBV1.3P 能反映病毒株的自身复制情况, 有利于研究 HBV 复制与转录调节的全过程[11]。

综上所述 本实验利用慢病毒基因转染技术 观察到转染后的 mRNA 在 HepG2. 2. 15 和 HBV1. 3P-HepG2 细胞模型中 其中 PPARa、IL-8 能够促进 HBV 复制 而 NFIB 可以抑制 HBV 复制 ,但它们通过何种途径促进或抑制 HBV 复制,其机制有待进一步深入研究。NFIB 可能成为治疗 HBV 的新型药物作用靶点 有待在动物模型上进一步验证其抑制 HBV 的疗效。本研究显示,在 HepG2. 2. 15、HBV1. 3P-HepG2细胞模型中过表达 IL-8 能够提高 HBV 复制水平。该研究结果可能有助于更好地认识肝脏炎症与 HBV DNA 载量之间的辨证关系,明确中医药(包括壮医药) 在抗 HBV 领域的定位与价值,实现中医药抗 HBV 治疗的新突破。

参考文献

- [1] 王贵强 汪福生 庄 辉 等. 慢性乙型肝炎防治指南(2019年版) [J]. 临床肝胆病杂志 2019 35(12): 2648 69.
- [2] Caviglia G P , Abate M L , Pellicano R , et al. Chronic hepatitis B therapy: available drugs and treatment guidelines [J]. Minerva Gastroenterol Dietol , 2015 $\beta1(2):61-70$.
- [3] 徐在超,赵凯涛,江应安,等. 乙型肝炎抗病毒药物研究进展 [J]. 科学通报 2019 64(30):3123-41.
- [4] 邱 华 毛德文 ,龙富立 ,等. 白花香莲解毒颗粒对 HBV 全基 因组1.3 倍体细胞模型病毒复制与表达的影响[J]. 中西医结

- 合肝病杂志 2018 28(6):345-8.
- [5] 邱 华 毛德文 胡振斌 等. 白花香莲解毒颗粒治疗 HBeAg 阳性慢性 HBV 免疫耐受期患者的临床研究 [J]. 中西医结合肝病杂志 2019 29(2):121-3,139.
- [6] 黄 鹏,邱 华,李家焕,等. 白花香莲解毒颗粒抑制 HBV 的 mRNA 表达谱筛选[J]. 中医学报 2020,35(1):117-24.
- [7] 许常青 陈 伟 方 圆 等. KSHV K15P 慢病毒载体的构建及 其滴度测定[J]. 安徽医科大学学报 2016 51(10):1417-20.
- [8] 邱 华 高月求,毛德文,等. HBV 全基因组 1.3 倍体 HepG2 细胞模型的构建与表达 [J]. 临床肝胆病杂志,2017,33(4):668-73.
- [9] Wang X ,Chen X ,Ye H ,et al. Association of mRNA expression level of IP-10 in peripheral blood mononuclear cells with HBV-associated acute-on-chronic liver failure and its prognosis [J]. J. Huazhong Univ Sci Technol Med Sci , 2017 , 37(5): 755 - 60.
- [10] 吴小桃 杨 静 ,王学军 ,等. 抑制核转录因子 PPARa 的反义

- 寡核苷酸的抗乙型肝炎病毒活性研究[J]. 生物技术通讯, 2011 22(6):773-6.
- [11] Chen Y , Shi M , Yu G , et al. Interleukin-8 , a promising predictor for prognosis of pancreatic cancer [J]. World J Gastroenterol , 2012 , 18(10): 1123 - 9.
- [12] 杨 蓉. Lnc158 对 Nfib 的表达及神经干细胞分化的调控作用的研究[D]. 南昌: 南昌大学 2017.
- [13] Guo H , Liu H , Mitchelson K , et al. Micrornas-372/373 promote the expression of hepatitis B virus through the targeting of nuclear factor I/B[J]. Hepatology 2011 54(3): 808-19.
- [14] 穆玄玄,管世鹤 杨 凯,等. IL-8 在 HBV 相关慢加急性肝衰竭中的临床意义[J]. 安徽医科大学学报 2017 52(4):562 5.
- [15] 金 蕾 叶 珺 郜玉峰 筹. 乙型肝炎病毒及其抗原诱导肝癌 细胞 HepG2 表达 IL-8 研究[J]. 安徽医学 2016 37(3): 266 8

Functional verification of inhibiting HBV replication and expression by hepatocyte-related mRNA

Huang Peng¹ Qiu Hua² ,Fan Chunjiao¹ ,et al

(¹Graduate School of Guangxi University of Traditional Chinese Medicine , Nanning 530001;

²Dept of Hepatology , The First Affiliated Hospital of Guangxi University of

Traditional Chinese Medicine , Nanning 530023)

Abstract *Objective* To verify the mRNA that inhibits the replication and expression of hepatitis B virus (HBV) in hepatocytes. *Methods* The peroxisome proliferator activated receptor (PPAR) α (PPAR α) , nuclear factor B (NFIB) and interleukin-8 (IL-8) genes were transferred into HepG2. 2. 15 and HBV whole genome 1. 3ploid HepG2 (HBV1. 3P-HepG2) cell models by lentiviral mediation. 48 hours after transfection , mRNA expression and HBVDNA replication level were detected by qPCR with blank control group (NC) as control. The expression of HBsAg and HBeAg in the cell supernatant was detected by chemiluminescence , and the expression of HBsAg in the cells was detected by immunofluorescence. *Results* In HepG2. 2. 15 and HBV1. 3P-HepG2 cell models , PPAR α could promote the replication of HBVDNA and the expression of HBsAg , and the expression of HBVDNA was 1. 46 and 1. 27 times higher than that of NC group (P < 0.05) . NFIB could inhibit the replication of HBVDNA and the expression of HBsAg , and the expression of HBsAg , and the expression of HBVDNA was 0. 76 and 0. 55 times higher than that of NC group (P < 0.05) . *LL*-8 could promote the replication of HBVDNA and the expression of HBsAg , and the expression of HB-VDNA was 1. 54 times and 1. 62 times higher than that of NC group (P < 0.05) . *Conclusion* PPAR α and IL-8 in hepatocytes can promote the replication and expression of HBV , while NFIB can inhibit the replication and expression of HBV , which can provide laboratory basis for follow-up research.

Key words hepatitis B virus; messenger ribonucleic acid; hepatocytes; lentivirus transfection technique