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Comparison of unilateral medial forebrain bundle and unilateral striatum

lesioned by 6-hydroxydopamine at early lesioned stage in rat model
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Abstract Objective To compare the functional changes of neurotransmitters in the dopamine ( DA) system of
rats lesioned by 6-hydroxydopamine in unilateral medial forebrain bundle( MFB) and unilateral striatum after 4
weeks of modeling. Methods Adult male Sprague-Dawley rats ( n =62) were divided randomly into four groups:
single-site model ( one site striatal lesion model n =18) four-site model ( four sites striatal lesion model n =
18) MFB model ( MFB lesion model n =18) and a sham operated control group ( n =8) . Immunohistochemical
tyrosine hydroxylase ( TH) staining was used to calculate the loss rate of positive DA neurons. The functional chan—
ges of dopamine transporters( DAT) and D2 receptors in rat models of four groups were detected by radioligand-re—
ceptor binding assay in vitro behavioral test and small-animal PET. Results Immunohistochemical staining results
of TH at 1desion 4esion and MFB model showed that the TH-positive cell loss rates of the lesion side in three
models were 19. 1% 84.7% and 97.1% respectively indicating that the model was successfully constructed.
The results of DAT/D2 receptor functions in the three models showed that compared with the sham operated con—
trol group the DAT binding ratio of radioactivity on the lesion side of 1desion 4-esion and MFB model significant—
ly decreased ( P <0.05 P <0.05 and P <0.01). The DAT binding ratio of radioactivity on the lesion side was
compared among 1 4 lesion and MFB model. It was found that the decrease degree of MFB model was significantly
higher than that of the previous two models ( P <0.01) and the decrease degree of 4desion model was significantly
higher than that of 1-desion model ( P <0.05) . Compared with the sham operated control group the D2 receptor
binding ratio of radioactivity on the lesion side of 1desion and 4desion model significantly decreased ( P <0. 05)
and there was no significant difference in the degree of decrease between the two models but the D2 receptor bind—
ing ratio of radioactivity on the lesion side of MFB model significantly increased ( P <0.05) . There was no differ—
ence in the distribution of DAT/D2 receptor on the lesion side and the normal side of the sham operated control
group. Methamphetamine caused ipsilateral rotations to the lesion side in all models. There were no significant
differences in methamphetamine-induced rotation among 1desion 4-esion and MFB models. Bromocriptine caused
ipsilateral rotations to the lesion side in 1desion and 4-esion models but contralateral rotations in MFB model.
There were no significant differences in bromocriptine-induced rotation between 1-esion and 4-esion models. The
results of stepping test showed the motion initiation time of the lesion side was significantly longer than that of the
normal side the stepping length of the lesion side was significantly shorter than that of the normal side and the ad-
justing steps of the lesion side was significantly less than that of the normal side ( P <0.001) but there was no sig—
nificant difference of the lesion side in the initiation time stepping length and adjusting steps among the three
groups of models. Conclusion The striatal lesion and MFB lesion models showed different pathophysiological
processes in terms of DA neurotransmitter functions and behavior. The MFB lesion model can mimic primary Par—
kinson’s disease while the striatal lesion model is similar to some Parkinson syndromes.
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